

XQuery 1.0: An XML Query Language

W3C Recommendation 23 January 2007

This version:
http://www.w3.org/TR/2007/REC-xquery-20070123/

Latest version:
http://www.w3.org/TR/xquery/

Previous version:
http://www.w3.org/TR/2006/PR-xquery-20061121/

Editors:
Scott Boag (XSL WG), IBM Research <scott_boag@us.ibm.com>
Don Chamberlin (XML Query WG), IBM Almaden Research Center, via
http://www.almaden.ibm.com/cs/people/chamberlin/
Mary F. Fernández (XML Query WG), AT&T Labs <mff@research.att.com>
Daniela Florescu (XML Query WG), Oracle <dana.florescu@oracle.com>
Jonathan Robie (XML Query WG), DataDirect Technologies, via
http://www.ibiblio.org/jwrobie/
Jérôme Siméon (XML Query WG), IBM T.J. Watson Research Center
<simeon@us.ibm.com>

Please refer to the errata for this document, which may include some normative
corrections.

See also translations.

This document is also available in these non-normative formats: XML and Recent
revisions.

Copyright © 2007 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability,
trademark and document use rules apply.

Abstract

XML is a versatile markup language, capable of labeling the information content of
diverse data sources including structured and semi-structured documents,
relational databases, and object repositories. A query language that uses the

Page 1 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

structure of XML intelligently can express queries across all these kinds of data,
whether physically stored in XML or viewed as XML via middleware. This
specification describes a query language called XQuery, which is designed to be
broadly applicable across many types of XML data sources.

Status of this Document

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current W3C publications
and the latest revision of this technical report can be found in the W3C technical
reports index at http://www.w3.org/TR/.

This is one document in a set of eight documents that have progressed to
Recommendation together (XQuery 1.0, XQueryX 1.0, XSLT 2.0, Data Model,
Functions and Operators, Formal Semantics, Serialization, XPath 2.0).

This is a Recommendation of the W3C. It has been developed by the W3C XML
Query Working Group, which is part of the XML Activity.

This document has been reviewed by W3C Members, by software developers, and
by other W3C groups and interested parties, and is endorsed by the Director as a
W3C Recommendation. It is a stable document and may be used as reference
material or cited from another document. W3C's role in making the
Recommendation is to draw attention to the specification and to promote its
widespread deployment. This enhances the functionality and interoperability of the
Web.

This document incorporates minor changes made against the Proposed
Recommendation of 21 November 2006; please see the public disposition of
comments for details. Changes to this document since the Proposed
Recommendation are detailed in the J Revision Log.

Please report errors in this document using W3C's public Bugzilla system
(instructions can be found at http://www.w3.org/XML/2005/04/qt-bugzilla). If
access to that system is not feasible, you may send your comments to the W3C
XSLT/XPath/XQuery public comments mailing list, public-qt-comments@w3.org. It
will be very helpful if you include the string “[XQuery]” in the subject line of your
report, whether made in Bugzilla or in email. Each Bugzilla entry and email
message should contain only one error report. Archives of the comments and
responses are available at http://lists.w3.org/Archives/Public/public-qt-comments/.

This document was produced by a group operating under the 5 February 2004
W3C Patent Policy. W3C maintains a public list of any patent disclosures made in
connection with the deliverables of the group; that page also includes instructions
for disclosing a patent. An individual who has actual knowledge of a patent which
the individual believes contains Essential Claim(s) must disclose the information in

Page 2 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

accordance with section 6 of the W3C Patent Policy.

Table of Contents

1 Introduction
2 Basics
 2.1 Expression Context
 2.1.1 Static Context
 2.1.2 Dynamic Context
 2.2 Processing Model
 2.2.1 Data Model Generation
 2.2.2 Schema Import Processing
 2.2.3 Expression Processing
 2.2.3.1 Static Analysis Phase
 2.2.3.2 Dynamic Evaluation Phase
 2.2.4 Serialization
 2.2.5 Consistency Constraints
 2.3 Error Handling
 2.3.1 Kinds of Errors
 2.3.2 Identifying and Reporting Errors
 2.3.3 Handling Dynamic Errors
 2.3.4 Errors and Optimization
 2.4 Concepts
 2.4.1 Document Order
 2.4.2 Atomization
 2.4.3 Effective Boolean Value
 2.4.4 Input Sources
 2.4.5 URI Literals
 2.5 Types
 2.5.1 Predefined Schema Types
 2.5.2 Typed Value and String Value
 2.5.3 SequenceType Syntax
 2.5.4 SequenceType Matching
 2.5.4.1 Matching a SequenceType and a Value
 2.5.4.2 Matching an ItemType and an Item
 2.5.4.3 Element Test
 2.5.4.4 Schema Element Test
 2.5.4.5 Attribute Test
 2.5.4.6 Schema Attribute Test
 2.6 Comments
3 Expressions
 3.1 Primary Expressions
 3.1.1 Literals
 3.1.2 Variable References
 3.1.3 Parenthesized Expressions
 3.1.4 Context Item Expression

Page 3 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

 3.1.5 Function Calls
 3.2 Path Expressions
 3.2.1 Steps
 3.2.1.1 Axes
 3.2.1.2 Node Tests
 3.2.2 Predicates
 3.2.3 Unabbreviated Syntax
 3.2.4 Abbreviated Syntax
 3.3 Sequence Expressions
 3.3.1 Constructing Sequences
 3.3.2 Filter Expressions
 3.3.3 Combining Node Sequences
 3.4 Arithmetic Expressions
 3.5 Comparison Expressions
 3.5.1 Value Comparisons
 3.5.2 General Comparisons
 3.5.3 Node Comparisons
 3.6 Logical Expressions
 3.7 Constructors
 3.7.1 Direct Element Constructors
 3.7.1.1 Attributes
 3.7.1.2 Namespace Declaration Attributes
 3.7.1.3 Content
 3.7.1.4 Boundary Whitespace
 3.7.2 Other Direct Constructors
 3.7.3 Computed Constructors
 3.7.3.1 Computed Element Constructors
 3.7.3.2 Computed Attribute Constructors
 3.7.3.3 Document Node Constructors
 3.7.3.4 Text Node Constructors
 3.7.3.5 Computed Processing Instruction Constructors
 3.7.3.6 Computed Comment Constructors
 3.7.4 In-scope Namespaces of a Constructed Element
 3.8 FLWOR Expressions
 3.8.1 For and Let Clauses
 3.8.2 Where Clause
 3.8.3 Order By and Return Clauses
 3.8.4 Example
 3.9 Ordered and Unordered Expressions
 3.10 Conditional Expressions
 3.11 Quantified Expressions
 3.12 Expressions on SequenceTypes
 3.12.1 Instance Of
 3.12.2 Typeswitch
 3.12.3 Cast
 3.12.4 Castable
 3.12.5 Constructor Functions

Page 4 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

 3.12.6 Treat
 3.13 Validate Expressions
 3.14 Extension Expressions
4 Modules and Prologs
 4.1 Version Declaration
 4.2 Module Declaration
 4.3 Boundary-space Declaration
 4.4 Default Collation Declaration
 4.5 Base URI Declaration
 4.6 Construction Declaration
 4.7 Ordering Mode Declaration
 4.8 Empty Order Declaration
 4.9 Copy-Namespaces Declaration
 4.10 Schema Import
 4.11 Module Import
 4.12 Namespace Declaration
 4.13 Default Namespace Declaration
 4.14 Variable Declaration
 4.15 Function Declaration
 4.16 Option Declaration
5 Conformance
 5.1 Minimal Conformance
 5.2 Optional Features
 5.2.1 Schema Import Feature
 5.2.2 Schema Validation Feature
 5.2.3 Static Typing Feature
 5.2.3.1 Static Typing Extensions
 5.2.4 Full Axis Feature
 5.2.5 Module Feature
 5.2.6 Serialization Feature
 5.3 Data Model Conformance

Appendices

A XQuery Grammar
 A.1 EBNF
 A.1.1 Notation
 A.1.2 Extra-grammatical Constraints
 A.1.3 Grammar Notes
 A.2 Lexical structure
 A.2.1 Terminal Symbols
 A.2.2 Terminal Delimitation
 A.2.3 End-of-Line Handling
 A.2.3.1 XML 1.0 End-of-Line Handling
 A.2.3.2 XML 1.1 End-of-Line Handling
 A.2.4 Whitespace Rules
 A.2.4.1 Default Whitespace Handling

Page 5 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

 A.2.4.2 Explicit Whitespace Handling
 A.3 Reserved Function Names
 A.4 Precedence Order
B Type Promotion and Operator Mapping
 B.1 Type Promotion
 B.2 Operator Mapping
C Context Components
 C.1 Static Context Components
 C.2 Dynamic Context Components
 C.3 Serialization Parameters
D Implementation-Defined Items
E References
 E.1 Normative References
 E.2 Non-normative References
 E.3 Background Material
F Error Conditions
G The application/xquery Media Type
 G.1 Introduction
 G.2 Registration of MIME Media Type application/xquery
 G.2.1 Interoperability Considerations
 G.2.2 Applications Using this Media Type
 G.2.3 File Extensions
 G.2.4 Intended Usage
 G.2.5 Author/Change Controller
 G.3 Encoding Considerations
 G.4 Recognizing XQuery Files
 G.5 Charset Default Rules
 G.6 Security Considerations
H Glossary (Non-Normative)
I Example Applications (Non-Normative)
 I.1 Joins
 I.2 Grouping
 I.3 Queries on Sequence
 I.4 Recursive Transformations
 I.5 Selecting Distinct Combinations
J Revision Log (Non-Normative)

1 Introduction

As increasing amounts of information are stored, exchanged, and presented using
XML, the ability to intelligently query XML data sources becomes increasingly
important. One of the great strengths of XML is its flexibility in representing many
different kinds of information from diverse sources. To exploit this flexibility, an
XML query language must provide features for retrieving and interpreting

Page 6 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

information from these diverse sources.

XQuery is designed to meet the requirements identified by the W3C XML Query
Working Group [XML Query 1.0 Requirements] and the use cases in [XML Query
Use Cases]. It is designed to be a language in which queries are concise and
easily understood. It is also flexible enough to query a broad spectrum of XML
information sources, including both databases and documents. The Query
Working Group has identified a requirement for both a non-XML query syntax and
an XML-based query syntax. XQuery is designed to meet the first of these
requirements. XQuery is derived from an XML query language called Quilt [Quilt],
which in turn borrowed features from several other languages, including XPath 1.0
[XPath 1.0], XQL [XQL], XML-QL [XML-QL], SQL [SQL], and OQL [ODMG].

[Definition: XQuery operates on the abstract, logical structure of an XML
document, rather than its surface syntax. This logical structure, known as the data
model, is defined in [XQuery/XPath Data Model (XDM)].]

XQuery Version 1.0 is an extension of XPath Version 2.0. Any expression that is
syntactically valid and executes successfully in both XPath 2.0 and XQuery 1.0 will
return the same result in both languages. Since these languages are so closely
related, their grammars and language descriptions are generated from a common
source to ensure consistency, and the editors of these specifications work together
closely.

XQuery also depends on and is closely related to the following specifications:

� [XQuery/XPath Data Model (XDM)] defines the data model that underlies all
XQuery expressions.

� [XQuery 1.0 and XPath 2.0 Formal Semantics] defines the static semantics
of XQuery and also contains a formal but non-normative description of the
dynamic semantics that may be useful for implementors and others who
require a formal definition.

� The type system of XQuery is based on [XML Schema].

� The built-in function library and the operators supported by XQuery are
defined in [XQuery 1.0 and XPath 2.0 Functions and Operators].

� One requirement in [XML Query 1.0 Requirements] is that an XML query
language have both a human-readable syntax and an XML-based syntax.
The XML-based syntax for XQuery is described in [XQueryX 1.0].

This document specifies a grammar for XQuery, using the same basic EBNF
notation used in [XML 1.0]. Unless otherwise noted (see A.2 Lexical structure),
whitespace is not significant in queries. Grammar productions are introduced
together with the features that they describe, and a complete grammar is also
presented in the appendix [A XQuery Grammar]. The appendix is the normative
version.

Page 7 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

In the grammar productions in this document, named symbols are underlined and
literal text is enclosed in double quotes. For example, the following production
describes the syntax of a function call:

The production should be read as follows: A function call consists of a QName
followed by an open-parenthesis. The open-parenthesis is followed by an optional
argument list. The argument list (if present) consists of one or more expressions,
separated by commas. The optional argument list is followed by a close-
parenthesis.

Certain aspects of language processing are described in this specification as
implementation-defined or implementation-dependent.

� [Definition: Implementation-defined indicates an aspect that may differ
between implementations, but must be specified by the implementor for each
particular implementation.]

� [Definition: Implementation-dependent indicates an aspect that may differ
between implementations, is not specified by this or any W3C specification,
and is not required to be specified by the implementor for any particular
implementation.]

This document normatively defines the dynamic semantics of XQuery. The static
semantics of XQuery are normatively defined in [XQuery 1.0 and XPath 2.0
Formal Semantics]. In this document, examples and material labeled as "Note" are
provided for explanatory purposes and are not normative.

2 Basics

The basic building block of XQuery is the expression, which is a string of
[Unicode] characters (the version of Unicode to be used is implementation-
defined.) The language provides several kinds of expressions which may be
constructed from keywords, symbols, and operands. In general, the operands of
an expression are other expressions. XQuery allows expressions to be nested with
full generality. (However, unlike a pure functional language, it does not allow
variable substitution if the variable declaration contains construction of new
nodes.)

Note:

This specification contains no assumptions or requirements regarding the
character set encoding of strings of [Unicode] characters.

Like XML, XQuery is a case-sensitive language. Keywords in XQuery use lower-

[93] FunctionCall ::= QName "(" (ExprSingle ("," ExprSingle)*)? ")"

Page 8 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

case characters and are not reserved—that is, names in XQuery expressions are
allowed to be the same as language keywords, except for certain unprefixed
function-names listed in A.3 Reserved Function Names.

[Definition: In the data model, a value is always a sequence.] [Definition: A
sequence is an ordered collection of zero or more items.] [Definition: An item is
either an atomic value or a node.] [Definition: An atomic value is a value in the
value space of an atomic type, as defined in [XML Schema].] [Definition: A node
is an instance of one of the node kinds defined in [XQuery/XPath Data Model
(XDM)].] Each node has a unique node identity, a typed value, and a string
value. In addition, some nodes have a name. The typed value of a node is a
sequence of zero or more atomic values. The string value of a node is a value of
type xs:string. The name of a node is a value of type xs:QName.

[Definition: A sequence containing exactly one item is called a singleton.] An item
is identical to a singleton sequence containing that item. Sequences are never
nested—for example, combining the values 1, (2, 3), and () into a single sequence
results in the sequence (1, 2, 3). [Definition: A sequence containing zero items is
called an empty sequence.]

[Definition: The term XDM instance is used, synonymously with the term value, to
denote an unconstrained sequence of nodes and/or atomic values in the data
model.]

Names in XQuery are called QNames, and conform to the syntax in [XML Names].
[Definition: Lexically, a QName consists of an optional namespace prefix and a
local name. If the namespace prefix is present, it is separated from the local name
by a colon.] A lexical QName can be converted into an expanded QName by
resolving its namespace prefix to a namespace URI, using the statically known
namespaces [err:XPST0081]. [Definition: An expanded QName consists of an
optional namespace URI and a local name. An expanded QName also retains its
original namespace prefix (if any), to facilitate casting the expanded QName into a
string.] The namespace URI value is whitespace normalized according to the rules
for the xs:anyURI type in [XML Schema]. Two expanded QNames are equal if their
namespace URIs are equal and their local names are equal (even if their
namespace prefixes are not equal). Namespace URIs and local names are
compared on a codepoint basis, without further normalization.

Certain namespace prefixes are predeclared by XQuery and bound to fixed
namespace URIs. These namespace prefixes are as follows:

� xml = http://www.w3.org/XML/1998/namespace

� xs = http://www.w3.org/2001/XMLSchema

� xsi = http://www.w3.org/2001/XMLSchema-instance

� fn = http://www.w3.org/2005/xpath-functions

Page 9 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

� local = http://www.w3.org/2005/xquery-local-functions (see 4.15
Function Declaration.)

In addition to the prefixes in the above list, this document uses the prefix err to
represent the namespace URI http://www.w3.org/2005/xqt-errors (see 2.3.2
Identifying and Reporting Errors). This namespace prefix is not predeclared and
its use in this document is not normative.

Element nodes have a property called in-scope namespaces. [Definition: The in-
scope namespaces property of an element node is a set of namespace
bindings, each of which associates a namespace prefix with a URI, thus defining
the set of namespace prefixes that are available for interpreting QNames within
the scope of the element. For a given element, one namespace binding may have
an empty prefix; the URI of this namespace binding is the default namespace
within the scope of the element.]

Note:

In [XPath 1.0], the in-scope namespaces of an element node are represented
by a collection of namespace nodes arranged on a namespace axis, which
is optional and deprecated in [XPath 2.0]. XQuery does not support the
namespace axis and does not represent namespace bindings in the form of
nodes. However, where other specifications such as [XSLT 2.0 and XQuery
1.0 Serialization] refer to namespace nodes, these nodes may be synthesized
from the in-scope namespaces of an element node by interpreting each
namespace binding as a namespace node.

[Definition: Within this specification, the term URI refers to a Universal Resource
Identifier as defined in [RFC3986] and extended in [RFC3987] with the new name
IRI.] The term URI has been retained in preference to IRI to avoid introducing new
names for concepts such as "Base URI" that are defined or referenced across the
whole family of XML specifications.

2.1 Expression Context

[Definition: The expression context for a given expression consists of all the
information that can affect the result of the expression.] This information is
organized into two categories called the static context and the dynamic context.

2.1.1 Static Context

[Definition: The static context of an expression is the information that is available
during static analysis of the expression, prior to its evaluation.] This information
can be used to decide whether the expression contains a static error. If analysis of
an expression relies on some component of the static context that has not been
assigned a value, a static error is raised [err:XPST0001].

Page 10 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

The individual components of the static context are summarized below. Rules
governing the scope and initialization of these components can be found in C.1
Static Context Components.

� [Definition: XPath 1.0 compatibility mode. This component must be set by
all host languages that include XPath 2.0 as a subset, indicating whether
rules for compatibility with XPath 1.0 are in effect. XQuery sets the value of
this component to false.]

� [Definition: Statically known namespaces. This is a set of (prefix, URI)
pairs that define all the namespaces that are known during static processing
of a given expression.] The URI value is whitespace normalized according to
the rules for the xs:anyURI type in [XML Schema]. Note the difference
between in-scope namespaces, which is a dynamic property of an element
node, and statically known namespaces, which is a static property of an
expression.

Some namespaces are predefined; additional namespaces can be added to
the statically known namespaces by namespace declarations in a Prolog and
by namespace declaration attributes in direct element constructors.

� [Definition: Default element/type namespace. This is a namespace URI or
"none". The namespace URI, if present, is used for any unprefixed QName
appearing in a position where an element or type name is expected.] The
URI value is whitespace normalized according to the rules for the xs:anyURI
type in [XML Schema].

� [Definition: Default function namespace. This is a namespace URI or
"none". The namespace URI, if present, is used for any unprefixed QName
appearing in a position where a function name is expected.] The URI value is
whitespace normalized according to the rules for the xs:anyURI type in [XML
Schema].

� [Definition: In-scope schema definitions. This is a generic term for all the
element declarations, attribute declarations, and schema type definitions that
are in scope during processing of an expression.] It includes the following
three parts:

� [Definition: In-scope schema types. Each schema type definition is
identified either by an expanded QName (for a named type) or by an
implementation-dependent type identifier (for an anonymous type).
The in-scope schema types include the predefined schema types
described in 2.5.1 Predefined Schema Types. If the Schema Import
Feature is supported, in-scope schema types also include all type
definitions found in imported schemas.]

� [Definition: In-scope element declarations. Each element declaration
is identified either by an expanded QName (for a top-level element
declaration) or by an implementation-dependent element identifier (for
a local element declaration). If the Schema Import Feature is
supported, in-scope element declarations include all element
declarations found in imported schemas.] An element declaration

Page 11 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

includes information about the element's substitution group affiliation.

[Definition: Substitution groups are defined in [XML Schema] Part 1,
Section 2.2.2.2. Informally, the substitution group headed by a given
element (called the head element) consists of the set of elements that
can be substituted for the head element without affecting the outcome
of schema validation.]

� [Definition: In-scope attribute declarations. Each attribute declaration
is identified either by an expanded QName (for a top-level attribute
declaration) or by an implementation-dependent attribute identifier (for
a local attribute declaration). If the Schema Import Feature is
supported, in-scope attribute declarations include all attribute
declarations found in imported schemas.]

� [Definition: In-scope variables. This is a set of (expanded QName, type)
pairs. It defines the set of variables that are available for reference within an
expression. The expanded QName is the name of the variable, and the type
is the static type of the variable.]

Variable declarations in a Prolog are added to in-scope variables. An
expression that binds a variable (such as a let, for, some, or every
expression) extends the in-scope variables of its subexpressions with the
new bound variable and its type. Within a function declaration, the in-scope
variables are extended by the names and types of the function parameters.

The static type of a variable may be either declared in a query or (if the Static
Typing Feature is enabled) inferred by static type inference rules as
described in [XQuery 1.0 and XPath 2.0 Formal Semantics].

� [Definition: Context item static type. This component defines the static type
of the context item within the scope of a given expression.]

� [Definition: Function signatures. This component defines the set of
functions that are available to be called from within an expression. Each
function is uniquely identified by its expanded QName and its arity (number
of parameters).] In addition to the name and arity, each function signature
specifies the static types of the function parameters and result.

The function signatures include the signatures of constructor functions,
which are discussed in 3.12.5 Constructor Functions.

� [Definition: Statically known collations. This is an implementation-defined
set of (URI, collation) pairs. It defines the names of the collations that are
available for use in processing queries and expressions.] [Definition: A
collation is a specification of the manner in which strings and URIs are
compared and, by extension, ordered. For a more complete definition of
collation, see [XQuery 1.0 and XPath 2.0 Functions and Operators].]

� [Definition: Default collation. This identifies one of the collations in statically
known collations as the collation to be used by functions and operators for
comparing and ordering values of type xs:string and xs:anyURI (and types
derived from them) when no explicit collation is specified.]

� [Definition: Construction mode. The construction mode governs the

Page 12 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

behavior of element and document node constructors. If construction mode
is preserve, the type of a constructed element node is xs:anyType, and all
attribute and element nodes copied during node construction retain their
original types. If construction mode is strip, the type of a constructed
element node is xs:untyped; all element nodes copied during node
construction receive the type xs:untyped, and all attribute nodes copied
during node construction receive the type xs:untypedAtomic.]

� [Definition: Ordering mode. Ordering mode, which has the value ordered or
unordered, affects the ordering of the result sequence returned by certain
path expressions, union, intersect, and except expressions, and FLWOR
expressions that have no order by clause.] Details are provided in the
descriptions of these expressions.

� [Definition: Default order for empty sequences. This component controls
the processing of empty sequences and NaN values as ordering keys in an
order by clause in a FLWOR expression, as described in 3.8.3 Order By
and Return Clauses.] Its value may be greatest or least.

� [Definition: Boundary-space policy. This component controls the
processing of boundary whitespace by direct element constructors, as
described in 3.7.1.4 Boundary Whitespace.] Its value may be preserve or
strip.

� [Definition: Copy-namespaces mode. This component controls the
namespace bindings that are assigned when an existing element node is
copied by an element constructor, as described in 3.7.1 Direct Element
Constructors. Its value consists of two parts: preserve or no-preserve, and
inherit or no-inherit.]

� [Definition: Base URI. This is an absolute URI, used when necessary in the
resolution of relative URIs (for example, by the fn:resolve-uri function.)]
The URI value is whitespace normalized according to the rules for the
xs:anyURI type in [XML Schema].

� [Definition: Statically known documents. This is a mapping from strings
onto types. The string represents the absolute URI of a resource that is
potentially available using the fn:doc function. The type is the static type of a
call to fn:doc with the given URI as its literal argument.] If the argument to
fn:doc is a string literal that is not present in statically known documents,
then the static type of fn:doc is document-node()?.

Note:

The purpose of the statically known documents is to provide static
type information, not to determine which documents are available. A URI
need not be found in the statically known documents to be accessed
using fn:doc.

� [Definition: Statically known collections. This is a mapping from strings
onto types. The string represents the absolute URI of a resource that is
potentially available using the fn:collection function. The type is the type of
the sequence of nodes that would result from calling the fn:collection

Page 13 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

function with this URI as its argument.] If the argument to fn:collection is a
string literal that is not present in statically known collections, then the
static type of fn:collection is node()*.

Note:

The purpose of the statically known collections is to provide static
type information, not to determine which collections are available. A URI
need not be found in the statically known collections to be accessed
using fn:collection.

� [Definition: Statically known default collection type. This is the type of the
sequence of nodes that would result from calling the fn:collection function
with no arguments.] Unless initialized to some other value by an
implementation, the value of statically known default collection type is
node()*.

2.1.2 Dynamic Context

[Definition: The dynamic context of an expression is defined as information that is
available at the time the expression is evaluated.] If evaluation of an expression
relies on some part of the dynamic context that has not been assigned a value, a
dynamic error is raised [err:XPDY0002].

The individual components of the dynamic context are summarized below. Further
rules governing the semantics of these components can be found in C.2 Dynamic
Context Components.

The dynamic context consists of all the components of the static context, and the
additional components listed below.

[Definition: The first three components of the dynamic context (context item,
context position, and context size) are called the focus of the expression.] The
focus enables the processor to keep track of which items are being processed by
the expression.

Certain language constructs, notably the path expression E1/E2 and the predicate
E1[E2], create a new focus for the evaluation of a sub-expression. In these
constructs, E2 is evaluated once for each item in the sequence that results from
evaluating E1. Each time E2 is evaluated, it is evaluated with a different focus. The
focus for evaluating E2 is referred to below as the inner focus, while the focus for
evaluating E1 is referred to as the outer focus. The inner focus exists only while
E2 is being evaluated. When this evaluation is complete, evaluation of the
containing expression continues with its original focus unchanged.

� [Definition: The context item is the item currently being processed. An item
is either an atomic value or a node.][Definition: When the context item is a
node, it can also be referred to as the context node.] The context item is

Page 14 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

returned by an expression consisting of a single dot (.). When an expression
E1/E2 or E1[E2] is evaluated, each item in the sequence obtained by
evaluating E1 becomes the context item in the inner focus for an evaluation
of E2.

� [Definition: The context position is the position of the context item within the
sequence of items currently being processed.] It changes whenever the
context item changes. When the focus is defined, the value of the context
position is an integer greater than zero. The context position is returned by
the expression fn:position(). When an expression E1/E2 or E1[E2] is
evaluated, the context position in the inner focus for an evaluation of E2 is
the position of the context item in the sequence obtained by evaluating E1.
The position of the first item in a sequence is always 1 (one). The context
position is always less than or equal to the context size.

� [Definition: The context size is the number of items in the sequence of items
currently being processed.] Its value is always an integer greater than zero.
The context size is returned by the expression fn:last(). When an
expression E1/E2 or E1[E2] is evaluated, the context size in the inner focus
for an evaluation of E2 is the number of items in the sequence obtained by
evaluating E1.

� [Definition: Variable values. This is a set of (expanded QName, value) pairs.
It contains the same expanded QNames as the in-scope variables in the
static context for the expression. The expanded QName is the name of the
variable and the value is the dynamic value of the variable, which includes its
dynamic type.]

� [Definition: Function implementations. Each function in function signatures
has a function implementation that enables the function to map instances of
its parameter types into an instance of its result type. For a user-defined
function, the function implementation is an XQuery expression. For a built-in
function or external function, the function implementation is implementation-
dependent.]

� [Definition: Current dateTime. This information represents an
implementation-dependent point in time during the processing of a query,
and includes an explicit timezone. It can be retrieved by the fn:current-
dateTime function. If invoked multiple times during the execution of a query,
this function always returns the same result.]

� [Definition: Implicit timezone. This is the timezone to be used when a date,
time, or dateTime value that does not have a timezone is used in a
comparison or arithmetic operation. The implicit timezone is an
implementation-defined value of type xs:dayTimeDuration. See [XML
Schema] for the range of legal values of a timezone.]

� [Definition: Available documents. This is a mapping of strings onto
document nodes. The string represents the absolute URI of a resource. The
document node is the root of a tree that represents that resource using the
data model. The document node is returned by the fn:doc function when

Page 15 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

applied to that URI.] The set of available documents is not limited to the set
of statically known documents, and it may be empty.

If there are one or more URIs in available documents that map to a
document node D, then the document-uri property of D must either be absent,
or must be one of these URIs.

Note:

This means that given a document node $N, the result of fn:doc
(fn:document-uri($N)) is $N will always be True, unless fn:document-
uri($N) is an empty sequence.

� [Definition: Available collections. This is a mapping of strings onto
sequences of nodes. The string represents the absolute URI of a resource.
The sequence of nodes represents the result of the fn:collection function
when that URI is supplied as the argument.] The set of available collections
is not limited to the set of statically known collections, and it may be empty.

For every document node D that is in the target of a mapping in available
collections, or that is the root of a tree containing such a node, the
document-uri property of D must either be absent, or must be a URI U such
that available documents contains a mapping from U to D."

Note:

This means that for any document node $N retrieved using the
fn:collection function, either directly or by navigating to the root of a
node that was returned, the result of fn:doc(fn:document-uri($N)) is
$N will always be True, unless fn:document-uri($N) is an empty
sequence. This implies a requirement for the fn:doc and fn:collection
functions to be consistent in their effect. If the implementation uses
catalogs or user-supplied URI resolvers to dereference URIs supplied to
the fn:doc function, the implementation of the fn:collection function
must take these mechanisms into account. For example, an
implementation might achieve this by mapping the collection URI to a
set of document URIs, which are then resolved using the same catalog
or URI resolver that is used by the fn:doc function.

� [Definition: Default collection. This is the sequence of nodes that would
result from calling the fn:collection function with no arguments.] The value
of default collection may be initialized by the implementation.

2.2 Processing Model

XQuery is defined in terms of the data model and the expression context.

Page 16 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

Figure 1: Processing Model Overview

Figure 1 provides a schematic overview of the processing steps that are discussed
in detail below. Some of these steps are completely outside the domain of XQuery;
in Figure 1, these are depicted outside the line that represents the boundaries of
the language, an area labeled external processing. The external processing
domain includes generation of an XDM instance that represents the data to be

Page 17 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

queried (see 2.2.1 Data Model Generation), schema import processing (see 2.2.2
Schema Import Processing) and serialization (see 2.2.4 Serialization). The area
inside the boundaries of the language is known as the query processing domain,
which includes the static analysis and dynamic evaluation phases (see 2.2.3
Expression Processing). Consistency constraints on the query processing
domain are defined in 2.2.5 Consistency Constraints.

2.2.1 Data Model Generation

Before a query can be processed, its input data must be represented as an XDM
instance. This process occurs outside the domain of XQuery, which is why Figure
1 represents it in the external processing domain. Here are some steps by which
an XML document might be converted to an XDM instance:

1. A document may be parsed using an XML parser that generates an XML
Information Set (see [XML Infoset]). The parsed document may then be
validated against one or more schemas. This process, which is described in
[XML Schema], results in an abstract information structure called the Post-
Schema Validation Infoset (PSVI). If a document has no associated
schema, its Information Set is preserved. (See DM1 in Fig. 1.)

2. The Information Set or PSVI may be transformed into an XDM instance by a
process described in [XQuery/XPath Data Model (XDM)]. (See DM2 in Fig.
1.)

The above steps provide an example of how an XDM instance might be
constructed. An XDM instance might also be synthesized directly from a relational
database, or constructed in some other way (see DM3 in Fig. 1.) XQuery is
defined in terms of the data model, but it does not place any constraints on how
XDM instances are constructed.

[Definition: Each element node and attribute node in an XDM instance has a type
annotation (referred to in [XQuery/XPath Data Model (XDM)] as its type-name
property.) The type annotation of a node is a schema type that describes the
relationship between the string value of the node and its typed value.] If the XDM
instance was derived from a validated XML document as described in Section 3.3

Construction from a PSVIDM, the type annotations of the element and attribute
nodes are derived from schema validation. XQuery does not provide a way to
directly access the type annotation of an element or attribute node.

The value of an attribute is represented directly within the attribute node. An
attribute node whose type is unknown (such as might occur in a schemaless
document) is given the type annotation xs:untypedAtomic.

The value of an element is represented by the children of the element node, which
may include text nodes and other element nodes. The type annotation of an
element node indicates how the values in its child text nodes are to be interpreted.

Page 18 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

An element that has not been validated (such as might occur in a schemaless
document) is annotated with the schema type xs:untyped. An element that has
been validated and found to be partially valid is annotated with the schema type
xs:anyType. If an element node is annotated as xs:untyped, all its descendant
element nodes are also annotated as xs:untyped. However, if an element node is
annotated as xs:anyType, some of its descendant element nodes may have a
more specific type annotation.

2.2.2 Schema Import Processing

The in-scope schema definitions in the static context may be extracted from actual
XML schemas as described in [XQuery 1.0 and XPath 2.0 Formal Semantics] (see
step SI1 in Figure 1) or may be generated by some other mechanism (see step
SI2 in Figure 1). In either case, the result must satisfy the consistency constraints
defined in 2.2.5 Consistency Constraints.

2.2.3 Expression Processing

XQuery defines two phases of processing called the static analysis phase and the
dynamic evaluation phase (see Fig. 1). During the static analysis phase, static
errors, dynamic errors, or type errors may be raised. During the dynamic
evaluation phase, only dynamic errors or type errors may be raised. These kinds
of errors are defined in 2.3.1 Kinds of Errors.

Within each phase, an implementation is free to use any strategy or algorithm
whose result conforms to the specifications in this document.

2.2.3.1 Static Analysis Phase

[Definition: The static analysis phase depends on the expression itself and on
the static context. The static analysis phase does not depend on input data
(other than schemas).]

During the static analysis phase, the query is parsed into an internal
representation called the operation tree (step SQ1 in Figure 1). A parse error is
raised as a static error [err:XPST0003]. The static context is initialized by the
implementation (step SQ2). The static context is then changed and augmented
based on information in the prolog (step SQ3). If the Schema Import Feature is
supported, the in-scope schema definitions are populated with information from
imported schemas. If the Module Feature is supported, the static context is
extended with function declarations and variable declarations from imported
modules. The static context is used to resolve schema type names, function
names, namespace prefixes, and variable names (step SQ4). If a name of one of
these kinds in the operation tree is not found in the static context, a static error
([err:XPST0008] or [err:XPST0017]) is raised (however, see exceptions to this rule
in 2.5.4.3 Element Test and 2.5.4.5 Attribute Test.)

Page 19 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

The operation tree is then normalized by making explicit the implicit operations
such as atomization and extraction of Effective Boolean Values (step SQ5). The
normalization process is described in [XQuery 1.0 and XPath 2.0 Formal
Semantics].

Each expression is then assigned a static type (step SQ6). [Definition: The static
type of an expression is a type such that, when the expression is evaluated, the
resulting value will always conform to the static type.] If the Static Typing Feature
is supported, the static types of various expressions are inferred according to the
rules described in [XQuery 1.0 and XPath 2.0 Formal Semantics]. If the Static
Typing Feature is not supported, the static types that are assigned are
implementation-dependent.

During the static analysis phase, if the Static Typing Feature is in effect and an
operand of an expression is found to have a static type that is not appropriate for
that operand, a type error is raised [err:XPTY0004]. If static type checking raises
no errors and assigns a static type T to an expression, then execution of the
expression on valid input data is guaranteed either to produce a value of type T or
to raise a dynamic error.

The purpose of the Static Typing Feature is to provide early detection of type
errors and to infer type information that may be useful in optimizing the evaluation
of an expression.

2.2.3.2 Dynamic Evaluation Phase

[Definition: The dynamic evaluation phase is the phase during which the value of
an expression is computed.] It occurs after completion of the static analysis phase.

The dynamic evaluation phase can occur only if no errors were detected during
the static analysis phase. If the Static Typing Feature is in effect, all type errors are
detected during static analysis and serve to inhibit the dynamic evaluation phase.

The dynamic evaluation phase depends on the operation tree of the expression
being evaluated (step DQ1), on the input data (step DQ4), and on the dynamic
context (step DQ5), which in turn draws information from the external environment
(step DQ3) and the static context (step DQ2). The dynamic evaluation phase may
create new data-model values (step DQ4) and it may extend the dynamic context
(step DQ5)—for example, by binding values to variables.

[Definition: A dynamic type is associated with each value as it is computed. The
dynamic type of a value may be more specific than the static type of the
expression that computed it (for example, the static type of an expression might be
xs:integer*, denoting a sequence of zero or more integers, but at evaluation time
its value may have the dynamic type xs:integer, denoting exactly one integer.)]

Page 20 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

If an operand of an expression is found to have a dynamic type that is not
appropriate for that operand, a type error is raised [err:XPTY0004].

Even though static typing can catch many type errors before an expression is
executed, it is possible for an expression to raise an error during evaluation that
was not detected by static analysis. For example, an expression may contain a
cast of a string into an integer, which is statically valid. However, if the actual value
of the string at run time cannot be cast into an integer, a dynamic error will result.
Similarly, an expression may apply an arithmetic operator to a value whose static
type is xs:untypedAtomic. This is not a static error, but at run time, if the value
cannot be successfully cast to a numeric type, a dynamic error will be raised.

When the Static Typing Feature is in effect, it is also possible for static analysis of
an expression to raise a type error, even though execution of the expression on
certain inputs would be successful. For example, an expression might contain a
function that requires an element as its parameter, and the static analysis phase
might infer the static type of the function parameter to be an optional element. This
case is treated as a type error and inhibits evaluation, even though the function
call would have been successful for input data in which the optional element is
present.

2.2.4 Serialization

[Definition: Serialization is the process of converting an XDM instance into a
sequence of octets (step DM4 in Figure 1.)] The general framework for
serialization is described in [XSLT 2.0 and XQuery 1.0 Serialization].

An XQuery implementation is not required to provide a serialization interface. For
example, an implementation may only provide a DOM interface (see [Document
Object Model]) or an interface based on an event stream. In these cases,
serialization would be outside of the scope of this specification.

[XSLT 2.0 and XQuery 1.0 Serialization] defines a set of serialization parameters
that govern the serialization process. If an XQuery implementation provides a
serialization interface, it may support (and may expose to users) any of the
serialization parameters listed (with default values) in C.3 Serialization
Parameters. An XQuery implementation that provides a serialization interface
must support some combination of serialization parameters in which method =
"xml" and version = "1.0".

Note:

The data model permits an element node to have fewer in-scope namespaces
than its parent. Correct serialization of such an element node would require
"undeclaration" of namespaces, which is a feature of [XML Names 1.1]. An
implementation that does not support [XML Names 1.1] is permitted to

Page 21 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

serialize such an element without "undeclaration" of namespaces, which
effectively causes the element to inherit the in-scope namespaces of its
parent.

2.2.5 Consistency Constraints

In order for XQuery to be well defined, the input XDM instance, the static context,
and the dynamic context must be mutually consistent. The consistency constraints
listed below are prerequisites for correct functioning of an XQuery implementation.
Enforcement of these consistency constraints is beyond the scope of this
specification. This specification does not define the result of a query under any
condition in which one or more of these constraints is not satisfied.

Some of the consistency constraints use the term data model schema.
[Definition: For a given node in an XDM instance, the data model schema is
defined as the schema from which the type annotation of that node was derived.]
For a node that was constructed by some process other than schema validation,
the data model schema consists simply of the schema type definition that is
represented by the type annotation of the node.

� For every node that has a type annotation, if that type annotation is found in
the in-scope schema definitions (ISSD), then its definition in the ISSD must
be equivalent to its definition in the data model schema. Furthermore, all
types that are derived by extension from the given type in the data model
schema must also be known by equivalent definitions in the ISSD.

� For every element name EN that is found both in an XDM instance and in the
in-scope schema definitions (ISSD), all elements that are known in the data
model schema to be in the substitution group headed by EN must also be
known in the ISSD to be in the substitution group headed by EN.

� Every element name, attribute name, or schema type name referenced in in-
scope variables or function signatures must be in the in-scope schema
definitions, unless it is an element name referenced as part of an
ElementTest or an attribute name referenced as part of an AttributeTest.

� Any reference to a global element, attribute, or type name in the in-scope
schema definitions must have a corresponding element, attribute or type
definition in the in-scope schema definitions.

� For each mapping of a string to a document node in available documents, if
there exists a mapping of the same string to a document type in statically
known documents, the document node must match the document type, using
the matching rules in 2.5.4 SequenceType Matching.

� For each mapping of a string to a sequence of nodes in available collections,
if there exists a mapping of the same string to a type in statically known
collections, the sequence of nodes must match the type, using the matching
rules in 2.5.4 SequenceType Matching.

� The sequence of nodes in the default collection must match the statically

Page 22 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

known default collection type, using the matching rules in 2.5.4
SequenceType Matching.

� The value of the context item must match the context item static type, using
the matching rules in 2.5.4 SequenceType Matching.

� For each (variable, type) pair in in-scope variables and the corresponding
(variable, value) pair in variable values such that the variable names are
equal, the value must match the type, using the matching rules in 2.5.4
SequenceType Matching.

� For each variable declared as external: If the variable declaration includes a
declared type, the external environment must provide a value for the variable
that matches the declared type, using the matching rules in 2.5.4
SequenceType Matching. If the variable declaration does not include a
declared type, the external environment must provide a type and a matching
value, using the same matching rules.

� For each function declared as external: the function implementation must
either return a value that matches the declared result type, using the
matching rules in 2.5.4 SequenceType Matching, or raise an
implementation-defined error.

� For a given query, define a participating ISSD as the in-scope schema
definitions of a module that is used in evaluating the query. If two
participating ISSDs contain a definition for the same schema type, element
name, or attribute name, the definitions must be equivalent in both ISSDs.
Furthermore, if two participating ISSDs each contain a definition of a schema
type T, the set of types derived by extension from T must be equivalent in
both ISSDs. Also, if two participating ISSDs each contain a definition of an
element name E, the substitution group headed by E must be equivalent in
both ISSDs.

� In the statically known namespaces, the prefix xml must not be bound to any
namespace URI other than http://www.w3.org/XML/1998/namespace, and no
prefix other than xml may be bound to this namespace URI.

2.3 Error Handling

2.3.1 Kinds of Errors

As described in 2.2.3 Expression Processing, XQuery defines a static analysis
phase, which does not depend on input data, and a dynamic evaluation phase,
which does depend on input data. Errors may be raised during each phase.

[Definition: A static error is an error that must be detected during the static
analysis phase. A syntax error is an example of a static error.]

[Definition: A dynamic error is an error that must be detected during the dynamic
evaluation phase and may be detected during the static analysis phase. Numeric
overflow is an example of a dynamic error.]

Page 23 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

[Definition: A type error may be raised during the static analysis phase or the
dynamic evaluation phase. During the static analysis phase, a type error occurs
when the static type of an expression does not match the expected type of the
context in which the expression occurs. During the dynamic evaluation phase, a
type error occurs when the dynamic type of a value does not match the expected
type of the context in which the value occurs.]

The outcome of the static analysis phase is either success or one or more type
errors, static errors, or statically-detected dynamic errors. The result of the
dynamic evaluation phase is either a result value, a type error, or a dynamic error.

If more than one error is present, or if an error condition comes within the scope of
more than one error defined in this specification, then any non-empty subset of
these errors may be reported.

During the static analysis phase, if the Static Typing Feature is in effect and the
static type assigned to an expression other than () or data(()) is empty-sequence
(), a static error is raised [err:XPST0005]. This catches cases in which a query
refers to an element or attribute that is not present in the in-scope schema
definitions, possibly because of a spelling error.

Independently of whether the Static Typing Feature is in effect, if an
implementation can determine during the static analysis phase that an expression,
if evaluated, would necessarily raise a type error or a dynamic error, the
implementation may (but is not required to) report that error during the static
analysis phase. However, the fn:error() function must not be evaluated during
the static analysis phase.

[Definition: In addition to static errors, dynamic errors, and type errors, an XQuery
implementation may raise warnings, either during the static analysis phase or the
dynamic evaluation phase. The circumstances in which warnings are raised, and
the ways in which warnings are handled, are implementation-defined.]

In addition to the errors defined in this specification, an implementation may raise
a dynamic error for a reason beyond the scope of this specification. For example,
limitations may exist on the maximum numbers or sizes of various objects. Any
such limitations, and the consequences of exceeding them, are implementation-
dependent.

2.3.2 Identifying and Reporting Errors

The errors defined in this specification are identified by QNames that have the
form err:XXYYnnnn, where:

� err denotes the namespace for XPath and XQuery errors,
http://www.w3.org/2005/xqt-errors. This binding of the namespace prefix

Page 24 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

err is used for convenience in this document, and is not normative.

� XX denotes the language in which the error is defined, using the following
encoding:

� XP denotes an error defined by XPath. Such an error may also occur
XQuery since XQuery includes XPath as a subset.

� XQ denotes an error defined by XQuery.

� YY denotes the error category, using the following encoding:

� ST denotes a static error.

� DY denotes a dynamic error.

� TY denotes a type error.

� nnnn is a unique numeric code.

Note:

The namespace URI for XPath and XQuery errors is not expected to change
from one version of XQuery to another. However, the contents of this
namespace may be extended to include additional error definitions.

The method by which an XQuery processor reports error information to the
external environment is implementation-defined.

An error can be represented by a URI reference that is derived from the error
QName as follows: an error with namespace URI NS and local part LP can be
represented as the URI reference NS#LP. For example, an error whose QName is
err:XPST0017 could be represented as http://www.w3.org/2005/xqt-
errors#XPST0017.

Note:

Along with a code identifying an error, implementations may wish to return
additional information, such as the location of the error or the processing
phase in which it was detected. If an implementation chooses to do so, then
the mechanism that it uses to return this information is implementation-
defined.

2.3.3 Handling Dynamic Errors

Except as noted in this document, if any operand of an expression raises a
dynamic error, the expression also raises a dynamic error. If an expression can
validly return a value or raise a dynamic error, the implementation may choose to
return the value or raise the dynamic error. For example, the logical expression
expr1 and expr2 may return the value false if either operand returns false, or
may raise a dynamic error if either operand raises a dynamic error.

Page 25 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

If more than one operand of an expression raises an error, the implementation
may choose which error is raised by the expression. For example, in this
expression:

($x div $y) + xs:decimal($z)

both the sub-expressions ($x div $y) and xs:decimal($z) may raise an error.
The implementation may choose which error is raised by the "+" expression. Once
one operand raises an error, the implementation is not required, but is permitted,
to evaluate any other operands.

[Definition: In addition to its identifying QName, a dynamic error may also carry a
descriptive string and one or more additional values called error values.] An
implementation may provide a mechanism whereby an application-defined error
handler can process error values and produce diagnostic messages.

A dynamic error may be raised by a built-in function or operator. For example, the
div operator raises an error if its operands are xs:decimal values and its second
operand is equal to zero. Errors raised by built-in functions and operators are
defined in [XQuery 1.0 and XPath 2.0 Functions and Operators].

A dynamic error can also be raised explicitly by calling the fn:error function,
which only raises an error and never returns a value. This function is defined in
[XQuery 1.0 and XPath 2.0 Functions and Operators]. For example, the following
function call raises a dynamic error, providing a QName that identifies the error, a
descriptive string, and a diagnostic value (assuming that the prefix app is bound to
a namespace containing application-defined error codes):

fn:error(xs:QName("app:err057"), "Unexpected value", fn:string($v))

2.3.4 Errors and Optimization

Because different implementations may choose to evaluate or optimize an
expression in different ways, certain aspects of the detection and reporting of
dynamic errors are implementation-dependent, as described in this section.

An implementation is always free to evaluate the operands of an operator in any
order.

In some cases, a processor can determine the result of an expression without
accessing all the data that would be implied by the formal expression semantics.
For example, the formal description of filter expressions suggests that $s[1]
should be evaluated by examining all the items in sequence $s, and selecting all
those that satisfy the predicate position()=1. In practice, many implementations
will recognize that they can evaluate this expression by taking the first item in the

Page 26 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

sequence and then exiting. If $s is defined by an expression such as //book
[author eq 'Berners-Lee'], then this strategy may avoid a complete scan of a
large document and may therefore greatly improve performance. However, a
consequence of this strategy is that a dynamic error or type error that would be
detected if the expression semantics were followed literally might not be detected
at all if the evaluation exits early. In this example, such an error might occur if
there is a book element in the input data with more than one author subelement.

The extent to which a processor may optimize its access to data, at the cost of not
detecting errors, is defined by the following rules.

Consider an expression Q that has an operand (sub-expression) E. In general the
value of E is a sequence. At an intermediate stage during evaluation of the
sequence, some of its items will be known and others will be unknown. If, at such
an intermediate stage of evaluation, a processor is able to establish that there are
only two possible outcomes of evaluating Q, namely the value V or an error, then
the processor may deliver the result V without evaluating further items in the
operand E. For this purpose, two values are considered to represent the same
outcome if their items are pairwise the same, where nodes are the same if they
have the same identity, and values are the same if they are equal and have
exactly the same type.

There is an exception to this rule: If a processor evaluates an operand E (wholly or
in part), then it is required to establish that the actual value of the operand E does
not violate any constraints on its cardinality. For example, the expression $e eq 0
results in a type error if the value of $e contains two or more items. A processor is
not allowed to decide, after evaluating the first item in the value of $e and finding it
equal to zero, that the only possible outcomes are the value true or a type error
caused by the cardinality violation. It must establish that the value of $e contains
no more than one item.

These rules apply to all the operands of an expression considered in combination:
thus if an expression has two operands E1 and E2, it may be evaluated using any
samples of the respective sequences that satisfy the above rules.

The rules cascade: if A is an operand of B and B is an operand of C, then the
processor needs to evaluate only a sufficient sample of B to determine the value of
C, and needs to evaluate only a sufficient sample of A to determine this sample of
B.

The effect of these rules is that the processor is free to stop examining further
items in a sequence as soon as it can establish that further items would not affect
the result except possibly by causing an error. For example, the processor may
return true as the result of the expression S1 = S2 as soon as it finds a pair of
equal values from the two sequences.

Page 27 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

Another consequence of these rules is that where none of the items in a sequence
contributes to the result of an expression, the processor is not obliged to evaluate
any part of the sequence. Again, however, the processor cannot dispense with a
required cardinality check: if an empty sequence is not permitted in the relevant
context, then the processor must ensure that the operand is not an empty
sequence.

Examples:

� If an implementation can find (for example, by using an index) that at least
one item returned by $expr1 in the following example has the value 47, it is
allowed to return true as the result of the some expression, without searching
for another item returned by $expr1 that would raise an error if it were
evaluated.

some $x in $expr1 satisfies $x = 47

� In the following example, if an implementation can find (for example, by
using an index) the product element-nodes that have an id child with the
value 47, it is allowed to return these nodes as the result of the path
expression, without searching for another product node that would raise an
error because it has an id child whose value is not an integer.

//product[id = 47]

For a variety of reasons, including optimization, implementations are free to rewrite
expressions into equivalent expressions. Other than the raising or not raising of
errors, the result of evaluating an equivalent expression must be the same as the
result of evaluating the original expression. Expression rewrite is illustrated by the
following examples.

� Consider the expression //part[color eq "Red"]. An implementation might
choose to rewrite this expression as //part[color = "Red"][color eq
"Red"]. The implementation might then process the expression as follows:
First process the "=" predicate by probing an index on parts by color to
quickly find all the parts that have a Red color; then process the "eq"
predicate by checking each of these parts to make sure it has only a single
color. The result would be as follows:

� Parts that have exactly one color that is Red are returned.

� If some part has color Red together with some other color, an error is
raised.

� The existence of some part that has no color Red but has multiple non-
Red colors does not trigger an error.

� The expression in the following example cannot raise a casting error if it is
evaluated exactly as written (i.e., left to right). Since neither predicate
depends on the context position, an implementation might choose to reorder

Page 28 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

the predicates to achieve better performance (for example, by taking
advantage of an index). This reordering could cause the expression to raise
an error.

$N[@x castable as xs:date][xs:date(@x) gt xs:date("2000-01-01")]

To avoid unexpected errors caused by expression rewrite, tests that are
designed to prevent dynamic errors should be expressed using conditional or
typeswitch expressions. Conditional and typeswitch expressions raise only
dynamic errors that occur in the branch that is actually selected. Thus, unlike
the previous example, the following example cannot raise a dynamic error if
@x is not castable into an xs:date:

$N[if (@x castable as xs:date)

 then xs:date(@x) gt xs:date("2000-01-01")

 else false()]

2.4 Concepts

This section explains some concepts that are important to the processing of
XQuery expressions.

2.4.1 Document Order

An ordering called document order is defined among all the nodes accessible
during processing of a given query, which may consist of one or more trees
(documents or fragments). Document order is defined in [XQuery/XPath Data
Model (XDM)], and its definition is repeated here for convenience. [Definition: The
node ordering that is the reverse of document order is called reverse document
order.]

Document order is a total ordering, although the relative order of some nodes is
implementation-dependent. [Definition: Informally, document order is the order in
which nodes appear in the XML serialization of a document.] [Definition: Document
order is stable, which means that the relative order of two nodes will not change
during the processing of a given query, even if this order is implementation-
dependent.]

Within a tree, document order satisfies the following constraints:

1. The root node is the first node.

2. Every node occurs before all of its children and descendants.

3. Attribute nodes immediately follow the element node with which they are
associated. The relative order of attribute nodes is stable but
implementation-dependent.

4. The relative order of siblings is the order in which they occur in the children

Page 29 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

property of their parent node.

5. Children and descendants occur before following siblings.

The relative order of nodes in distinct trees is stable but implementation-
dependent, subject to the following constraint: If any node in a given tree T1 is
before any node in a different tree T2, then all nodes in tree T1 are before all
nodes in tree T2.

2.4.2 Atomization

The semantics of some XQuery operators depend on a process called
atomization. Atomization is applied to a value when the value is used in a context
in which a sequence of atomic values is required. The result of atomization is
either a sequence of atomic values or a type error [err:FOTY0012]. [Definition:
Atomization of a sequence is defined as the result of invoking the fn:data
function on the sequence, as defined in [XQuery 1.0 and XPath 2.0 Functions and
Operators].]

The semantics of fn:data are repeated here for convenience. The result of
fn:data is the sequence of atomic values produced by applying the following rules
to each item in the input sequence:

� If the item is an atomic value, it is returned.

� If the item is a node, its typed value is returned (err:FOTY0012 is raised if
the node has no typed value.)

Atomization is used in processing the following types of expressions:

� Arithmetic expressions

� Comparison expressions

� Function calls and returns

� Cast expressions

� Constructor expressions for various kinds of nodes

� order by clauses in FLWOR expressions

2.4.3 Effective Boolean Value

Under certain circumstances (listed below), it is necessary to find the effective
boolean value of a value. [Definition: The effective boolean value of a value is
defined as the result of applying the fn:boolean function to the value, as defined in
[XQuery 1.0 and XPath 2.0 Functions and Operators].]

The dynamic semantics of fn:boolean are repeated here for convenience:

Page 30 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

1. If its operand is an empty sequence, fn:boolean returns false.

2. If its operand is a sequence whose first item is a node, fn:boolean returns
true.

3. If its operand is a singleton value of type xs:boolean or derived from
xs:boolean, fn:boolean returns the value of its operand unchanged.

4. If its operand is a singleton value of type xs:string, xs:anyURI,
xs:untypedAtomic, or a type derived from one of these, fn:boolean returns
false if the operand value has zero length; otherwise it returns true.

5. If its operand is a singleton value of any numeric type or derived from a
numeric type, fn:boolean returns false if the operand value is NaN or is
numerically equal to zero; otherwise it returns true.

6. In all other cases, fn:boolean raises a type error [err:FORG0006].

Note:

The static semantics of fn:boolean are defined in Section 7.2.4 The

fn:boolean functionFS.

Note:

The effective boolean value of a sequence that contains at least one node
and at least one atomic value may be nondeterministic in regions of a query
where ordering mode is unordered.

The effective boolean value of a sequence is computed implicitly during
processing of the following types of expressions:

� Logical expressions (and, or)

� The fn:not function

� The where clause of a FLWOR expression

� Certain types of predicates, such as a[b]

� Conditional expressions (if)

� Quantified expressions (some, every)

Note:

The definition of effective boolean value is not used when casting a value to
the type xs:boolean, for example in a cast expression or when passing a
value to a function whose expected parameter is of type xs:boolean.

2.4.4 Input Sources

XQuery has a set of functions that provide access to input data. These functions

Page 31 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

are of particular importance because they provide a way in which an expression
can reference a document or a collection of documents. The input functions are
described informally here; they are defined in [XQuery 1.0 and XPath 2.0
Functions and Operators].

An expression can access input data either by calling one of the input functions or
by referencing some part of the dynamic context that is initialized by the external
environment, such as a variable or context item.

The input functions supported by XQuery are as follows:

� The fn:doc function takes a string containing a URI. If that URI is associated
with a document in available documents, fn:doc returns a document node
whose content is the data model representation of the given document;
otherwise it raises a dynamic error (see [XQuery 1.0 and XPath 2.0
Functions and Operators] for details).

� The fn:collection function with one argument takes a string containing a
URI. If that URI is associated with a collection in available collections,
fn:collection returns the data model representation of that collection;
otherwise it raises a dynamic error (see [XQuery 1.0 and XPath 2.0
Functions and Operators] for details). A collection may be any sequence of
nodes. For example, the expression fn:collection
("http://example.org")//customer identifies all the customer elements that
are descendants of nodes found in the collection whose URI is
http://example.org.

� The fn:collection function with zero arguments returns the default
collection, an implementation-dependent sequence of nodes.

2.4.5 URI Literals

In certain places in the XQuery grammar, a statically known valid URI is required.
These places are denoted by the grammatical symbol URILiteral. For example,
URILiterals are used to specify namespaces and collations, both of which must be
statically known.

Syntactically, a URILiteral is identical to a StringLiteral: a sequence of zero or
more characters enclosed in single or double quotes. However, an implementation
MAY raise a static error [err:XQST0046] if the value of a URILiteral is of nonzero
length and is not in the lexical space of xs:anyURI.

As in a string literal, any predefined entity reference (such as &), character
reference (such as •), or EscapeQuot or EscapeApos (for example, "") is
replaced by its appropriate expansion. Certain characters, notably the ampersand,

[140] URILiteral ::= StringLiteral

Page 32 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

can only be represented using a predefined entity reference or a character
reference.

The URILiteral is subjected to whitespace normalization as defined for the
xs:anyURI type in [XML Schema]: this means that leading and trailing whitespace
is removed, and any other sequence of whitespace characters is replaced by a
single space (#x20) character. Whitespace normalization is done after the
expansion of character references, so writing a newline (for example) as

does not prevent its being normalized to a space character.

The URILiteral is not automatically subjected to percent-encoding or decoding as
defined in [RFC3986]. Any process that attempts to resolve the URI against a
base URI, or to dereference the URI, may however apply percent-encoding or
decoding as defined in the relevant RFCs.

Note:

The xs:anyURI type is designed to anticipate the introduction of
Internationalized Resource Identifiers (IRI's) as defined in [RFC3987].

The following is an example of a valid URILiteral:

"http://www.w3.org/2005/xpath-functions/collation/codepoint"

2.5 Types

The type system of XQuery is based on [XML Schema], and is formally defined in
[XQuery 1.0 and XPath 2.0 Formal Semantics].

[Definition: A sequence type is a type that can be expressed using the
SequenceType syntax. Sequence types are used whenever it is necessary to refer
to a type in an XQuery expression. The term sequence type suggests that this
syntax is used to describe the type of an XQuery value, which is always a
sequence.]

[Definition: A schema type is a type that is (or could be) defined using the facilities
of [XML Schema] (including the built-in types of [XML Schema]).] A schema type
can be used as a type annotation on an element or attribute node (unless it is a
non-instantiable type such as xs:NOTATION or xs:anyAtomicType, in which case its
derived types can be so used). Every schema type is either a complex type or a
simple type; simple types are further subdivided into list types, union types, and
atomic types (see [XML Schema] for definitions and explanations of these terms.)

Atomic types represent the intersection between the categories of sequence type
and schema type. An atomic type, such as xs:integer or my:hatsize, is both a

Page 33 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

sequence type and a schema type.

2.5.1 Predefined Schema Types

The in-scope schema types in the static context are initialized with certain
predefined schema types, including the built-in schema types in the namespace
http://www.w3.org/2001/XMLSchema, which has the predefined namespace prefix
xs. The schema types in this namespace are defined in [XML Schema] and
augmented by additional types defined in [XQuery/XPath Data Model (XDM)].
Element and attribute declarations in the xs namespace are not implicitly included
in the static context. The schema types defined in [XQuery/XPath Data Model
(XDM)] are summarized below.

1. [Definition: xs:untyped is used as the type annotation of an element node
that has not been validated, or has been validated in skip mode.] No
predefined schema types are derived from xs:untyped.

2. [Definition: xs:untypedAtomic is an atomic type that is used to denote
untyped atomic data, such as text that has not been assigned a more
specific type.] An attribute that has been validated in skip mode is
represented in the data model by an attribute node with the type annotation
xs:untypedAtomic. No predefined schema types are derived from
xs:untypedAtomic.

3. [Definition: xs:dayTimeDuration is derived by restriction from xs:duration.
The lexical representation of xs:dayTimeDuration is restricted to contain only
day, hour, minute, and second components.]

4. [Definition: xs:yearMonthDuration is derived by restriction from xs:duration.
The lexical representation of xs:yearMonthDuration is restricted to contain
only year and month components.]

5. [Definition: xs:anyAtomicType is an atomic type that includes all atomic
values (and no values that are not atomic). Its base type is
xs:anySimpleType from which all simple types, including atomic, list, and
union types, are derived. All primitive atomic types, such as xs:integer,
xs:string, and xs:untypedAtomic, have xs:anyAtomicType as their base
type.]

Note:

xs:anyAtomicType will not appear as the type of an actual value in an
XDM instance.

The relationships among the schema types in the xs namespace are illustrated in
Figure 2. A more complete description of the XQuery type hierarchy can be found
in [XQuery 1.0 and XPath 2.0 Functions and Operators].

Page 34 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

Figure 2: Hierarchy of Schema Types used in XQuery

2.5.2 Typed Value and String Value

Every node has a typed value and a string value. [Definition: The typed value of
a node is a sequence of atomic values and can be extracted by applying the
fn:data function to the node.] [Definition: The string value of a node is a string
and can be extracted by applying the fn:string function to the node.] Definitions
of fn:data and fn:string can be found in [XQuery 1.0 and XPath 2.0 Functions
and Operators].

An implementation may store both the typed value and the string value of a node,
or it may store only one of these and derive the other as needed. The string value
of a node must be a valid lexical representation of the typed value of the node, but
the node is not required to preserve the string representation from the original
source document. For example, if the typed value of a node is the xs:integer
value 30, its string value might be "30" or "0030".

The typed value, string value, and type annotation of a node are closely related,

Page 35 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

and are defined by rules found in the following locations:

� If the node was created by mapping from an Infoset or PSVI, see rules in
[XQuery/XPath Data Model (XDM)].

� If the node was created by an XQuery node constructor, see rules in 3.7.1
Direct Element Constructors, 3.7.3.1 Computed Element Constructors,
or 3.7.3.2 Computed Attribute Constructors.

� If the node was created by a validate expression, see rules in 3.13 Validate
Expressions.

As a convenience to the reader, the relationship between typed value and string
value for various kinds of nodes is summarized and illustrated by examples below.

1. For text and document nodes, the typed value of the node is the same as its
string value, as an instance of the type xs:untypedAtomic. The string value
of a document node is formed by concatenating the string values of all its
descendant text nodes, in document order.

2. The typed value of a comment or processing instruction node is the same as
its string value. It is an instance of the type xs:string.

3. The typed value of an attribute node with the type annotation
xs:anySimpleType or xs:untypedAtomic is the same as its string value, as an
instance of xs:untypedAtomic. The typed value of an attribute node with any
other type annotation is derived from its string value and type annotation
using the lexical-to-value-space mapping defined in [XML Schema] Part 2 for
the relevant type.

Example: A1 is an attribute having string value "3.14E-2" and type
annotation xs:double. The typed value of A1 is the xs:double value whose
lexical representation is 3.14E-2.

Example: A2 is an attribute with type annotation xs:IDREFS, which is a list
datatype whose item type is the atomic datatype xs:IDREF. Its string value is
"bar baz faz". The typed value of A2 is a sequence of three atomic values
("bar", "baz", "faz"), each of type xs:IDREF. The typed value of a node is
never treated as an instance of a named list type. Instead, if the type
annotation of a node is a list type (such as xs:IDREFS), its typed value is
treated as a sequence of the atomic type from which it is derived (such as
xs:IDREF).

4. For an element node, the relationship between typed value and string value
depends on the node's type annotation, as follows:

a. If the type annotation is xs:untyped or xs:anySimpleType or denotes a
complex type with mixed content (including xs:anyType), then the typed
value of the node is equal to its string value, as an instance of
xs:untypedAtomic. However, if the nilled property of the node is true,
then its typed value is the empty sequence.

Example: E1 is an element node having type annotation xs:untyped

Page 36 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

and string value "1999-05-31". The typed value of E1 is "1999-05-31",
as an instance of xs:untypedAtomic.

Example: E2 is an element node with the type annotation formula,
which is a complex type with mixed content. The content of E2 consists
of the character "H", a child element named subscript with string value
"2", and the character "O". The typed value of E2 is "H2O" as an instance
of xs:untypedAtomic.

b. If the type annotation denotes a simple type or a complex type with
simple content, then the typed value of the node is derived from its
string value and its type annotation in a way that is consistent with
schema validation. However, if the nilled property of the node is true,
then its typed value is the empty sequence.

Example: E3 is an element node with the type annotation cost, which
is a complex type that has several attributes and a simple content type
of xs:decimal. The string value of E3 is "74.95". The typed value of E3
is 74.95, as an instance of xs:decimal.

Example: E4 is an element node with the type annotation hatsizelist,
which is a simple type derived from the atomic type hatsize, which in
turn is derived from xs:integer. The string value of E4 is "7 8 9". The
typed value of E4 is a sequence of three values (7, 8, 9), each of type
hatsize.

Example: E5 is an element node with the type annotation my:integer-
or-string which is a union type with member types xs:integer and
xs:string. The string value of E5 is "47". The typed value of E5 is 47
as an xs:integer, since xs:integer is the member type that validated
the content of E5. In general, when the type annotation of a node is a
union type, the typed value of the node will be an instance of one of the
member types of the union.

Note:

If an implementation stores only the string value of a node, and the
type annotation of the node is a union type, the implementation
must be able to deliver the typed value of the node as an instance
of the appropriate member type.

c. If the type annotation denotes a complex type with empty content, then
the typed value of the node is the empty sequence and its string value
is the zero-length string.

d. If the type annotation denotes a complex type with element-only
content, then the typed value of the node is undefined. The fn:data
function raises a type error [err:FOTY0012] when applied to such a
node. The string value of such a node is equal to the concatenated
string values of all its text node descendants, in document order.

Example: E6 is an element node with the type annotation weather,
which is a complex type whose content type specifies element-only.

Page 37 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

E6 has two child elements named temperature and precipitation.
The typed value of E6 is undefined, and the fn:data function applied to
E6 raises an error.

2.5.3 SequenceType Syntax

Whenever it is necessary to refer to a type in an XQuery expression, the
SequenceType syntax is used.

[119] SequenceType ::= ("empty-sequence" "(" ")")
| (ItemType OccurrenceIndicator?)

[121] ItemType ::= KindTest | ("item" "(" ")") |
AtomicType

[120] OccurrenceIndicator ::= "?" | "*" | "+"

[122] AtomicType ::= QName

[123] KindTest ::= DocumentTest
| ElementTest

| AttributeTest

| SchemaElementTest

| SchemaAttributeTest

| PITest

| CommentTest

| TextTest

| AnyKindTest

[125] DocumentTest ::= "document-node" "(" (ElementTest |
SchemaElementTest)? ")"

[133] ElementTest ::= "element" "(" (ElementNameOrWildcard
("," TypeName "?"?)?)? ")"

[135] SchemaElementTest ::= "schema-element" "("
ElementDeclaration ")"

[136] ElementDeclaration ::= ElementName

[129] AttributeTest ::= "attribute" "(" (AttribNameOrWildcard
("," TypeName)?)? ")"

[131] SchemaAttributeTest ::= "schema-attribute" "("
AttributeDeclaration ")"

[132] AttributeDeclaration ::= AttributeName

[134] ElementNameOrWildcard ::= ElementName | "*"

[138] ElementName ::= QName

[130] AttribNameOrWildcard ::= AttributeName | "*"

[137] AttributeName ::= QName

[139] TypeName ::= QName

[128] PITest ::= "processing-instruction" "(" (NCName |
StringLiteral)? ")"

[127] CommentTest ::= "comment" "(" ")"

[126] TextTest ::= "text" "(" ")"

[124] AnyKindTest ::= "node" "(" ")"

Page 38 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

With the exception of the special type empty-sequence(), a sequence type
consists of an item type that constrains the type of each item in the sequence,
and a cardinality that constrains the number of items in the sequence. Apart from
the item type item(), which permits any kind of item, item types divide into node
types (such as element()) and atomic types (such as xs:integer).

Item types representing element and attribute nodes may specify the required type
annotations of those nodes, in the form of a schema type. Thus the item type
element(*, us:address) denotes any element node whose type annotation is (or
is derived from) the schema type named us:address.

Here are some examples of sequence types that might be used in XQuery
expressions:

� xs:date refers to the built-in atomic schema type named xs:date

� attribute()? refers to an optional attribute node

� element() refers to any element node

� element(po:shipto, po:address) refers to an element node that has the
name po:shipto and has the type annotation po:address (or a schema type
derived from po:address)

� element(*, po:address) refers to an element node of any name that has the
type annotation po:address (or a type derived from po:address)

� element(customer) refers to an element node named customer with any type
annotation

� schema-element(customer) refers to an element node whose name is
customer (or is in the substitution group headed by customer) and whose
type annotation matches the schema type declared for a customer element in
the in-scope element declarations

� node()* refers to a sequence of zero or more nodes of any kind

� item()+ refers to a sequence of one or more nodes or atomic values

2.5.4 SequenceType Matching

[Definition: During evaluation of an expression, it is sometimes necessary to
determine whether a value with a known dynamic type "matches" an expected
sequence type. This process is known as SequenceType matching.] For
example, an instance of expression returns true if the dynamic type of a given
value matches a given sequence type, or false if it does not.

QNames appearing in a sequence type have their prefixes expanded to
namespace URIs by means of the statically known namespaces and (where
applicable) the default element/type namespace. An unprefixed attribute QName is
in no namespace. Equality of QNames is defined by the eq operator.

Page 39 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

The rules for SequenceType matching compare the dynamic type of a value with
an expected sequence type. These rules are a subset of the formal rules that
match a value with an expected type defined in [XQuery 1.0 and XPath 2.0 Formal
Semantics], because the Formal Semantics must be able to match values against
types that are not expressible using the SequenceType syntax.

Some of the rules for SequenceType matching require determining whether a
given schema type is the same as or derived from an expected schema type. The
given schema type may be "known" (defined in the in-scope schema definitions),
or "unknown" (not defined in the in-scope schema definitions). An unknown
schema type might be encountered, for example, if a source document has been
validated using a schema that was not imported into the static context. In this
case, an implementation is allowed (but is not required) to provide an
implementation-dependent mechanism for determining whether the unknown
schema type is derived from the expected schema type. For example, an
implementation might maintain a data dictionary containing information about type
hierarchies.

[Definition: The use of a value whose dynamic type is derived from an expected
type is known as subtype substitution.] Subtype substitution does not change
the actual type of a value. For example, if an xs:integer value is used where an
xs:decimal value is expected, the value retains its type as xs:integer.

The definition of SequenceType matching relies on a pseudo-function named
derives-from(AT, ET), which takes an actual simple or complex schema type AT
and an expected simple or complex schema type ET, and either returns a boolean
value or raises a type error [err:XPTY0004]. The pseudo-function derives-from is
defined below and is defined formally in [XQuery 1.0 and XPath 2.0 Formal
Semantics].

� derives-from(AT, ET) returns true if ET is a known type and any of the
following three conditions is true:

1. AT is a schema type found in the in-scope schema definitions, and is
the same as ET or is derived by restriction or extension from ET

2. AT is a schema type not found in the in-scope schema definitions, and
an implementation-dependent mechanism is able to determine that AT
is derived by restriction from ET

3. There exists some schema type IT such that derives-from(IT, ET) and
derives-from(AT, IT) are true.

� derives-from(AT, ET) returns false if ET is a known type and either the first
and third or the second and third of the following conditions are true:

1. AT is a schema type found in the in-scope schema definitions, and is
not the same as ET, and is not derived by restriction or extension from
ET

2. AT is a schema type not found in the in-scope schema definitions, and

Page 40 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

an implementation-dependent mechanism is able to determine that AT
is not derived by restriction from ET

3. No schema type IT exists such that derives-from(IT, ET) and
derives-from(AT, IT) are true.

� derives-from(AT, ET) raises a type error [err:XPTY0004] if:

1. ET is an unknown type, or

2. AT is an unknown type, and the implementation is not able to
determine whether AT is derived by restriction from ET.

Note:

The derives-from pseudo-function cannot be written as a real XQuery
function, because types are not valid function parameters.

The rules for SequenceType matching are given below, with examples (the
examples are for purposes of illustration, and do not cover all possible cases).

2.5.4.1 Matching a SequenceType and a Value

� The sequence type empty-sequence() matches a value that is the empty
sequence.

� An ItemType with no OccurrenceIndicator matches any value that contains
exactly one item if the ItemType matches that item (see 2.5.4.2 Matching an
ItemType and an Item).

� An ItemType with an OccurrenceIndicator matches a value if the number of
items in the value matches the OccurrenceIndicator and the ItemType
matches each of the items in the value.

An OccurrenceIndicator specifies the number of items in a sequence, as follows:

� ? matches zero or one items

� * matches zero or more items

� + matches one or more items

As a consequence of these rules, any sequence type whose OccurrenceIndicator
is * or ? matches a value that is an empty sequence.

2.5.4.2 Matching an ItemType and an Item

� An ItemType consisting simply of a QName is interpreted as an AtomicType.
An AtomicType AtomicType matches an atomic value whose actual type is
AT if derives-from(AT, AtomicType) is true. If a QName that is used as an
AtomicType is not defined as an atomic type in the in-scope schema types, a
static error is raised [err:XPST0051].

Page 41 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

Example: The AtomicType xs:decimal matches the value 12.34 (a decimal
literal). xs:decimal also matches a value whose type is shoesize, if shoesize
is an atomic type derived by restriction from xs:decimal.

Note:

The names of non-atomic types such as xs:IDREFS are not accepted in
this context, but can often be replaced by an atomic type with an
occurrence indicator, such as xs:IDREF+.

� item() matches any single item.

Example: item() matches the atomic value 1 or the element <a/>.

� node() matches any node.

� text() matches any text node.

� processing-instruction() matches any processing-instruction node.

� processing-instruction(N) matches any processing-instruction node
whose name (called its "PITarget" in XML) is equal to N, where N is an
NCName.

Example: processing-instruction(xml-stylesheet) matches any
processing instruction whose PITarget is xml-stylesheet.

For backward compatibility with XPath 1.0, the PITarget of a processing
instruction may also be expressed as a string literal, as in this example:
processing-instruction("xml-stylesheet").

� comment() matches any comment node.

� document-node() matches any document node.

� document-node(E) matches any document node that contains exactly one
element node, optionally accompanied by one or more comment and
processing instruction nodes, if E is an ElementTest or SchemaElementTest
that matches the element node (see 2.5.4.3 Element Test and 2.5.4.4
Schema Element Test).

Example: document-node(element(book)) matches a document node
containing exactly one element node that is matched by the ElementTest
element(book).

� An ItemType that is an ElementTest, SchemaElementTest, AttributeTest, or
SchemaAttributeTest matches an element or attribute node as described in
the following sections.

2.5.4.3 Element Test

An ElementTest is used to match an element node by its name and/or type
annotation. An ElementTest may take any of the following forms. In these forms,
ElementName need not be present in the in-scope element declarations, but
TypeName must be present in the in-scope schema types [err:XPST0008]. Note
that substitution groups do not affect the semantics of ElementTest.

Page 42 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

1. element() and element(*) match any single element node, regardless of its
name or type annotation.

2. element(ElementName) matches any element node whose name is
ElementName, regardless of its type annotation or nilled property.

Example: element(person) matches any element node whose name is
person.

3. element(ElementName, TypeName) matches an element node whose
name is ElementName if derives-from(AT, TypeName) is true, where AT
is the type annotation of the element node, and the nilled property of the
node is false.

Example: element(person, surgeon) matches a non-nilled element node
whose name is person and whose type annotation is surgeon (or is derived
from surgeon).

4. element(ElementName, TypeName ?) matches an element node whose
name is ElementName if derives-from(AT, TypeName) is true, where AT is
the type annotation of the element node. The nilled property of the node
may be either true or false.

Example: element(person, surgeon?) matches a nilled or non-nilled element
node whose name is person and whose type annotation is surgeon (or is
derived from surgeon).

5. element(*, TypeName) matches an element node regardless of its name, if
derives-from(AT, TypeName) is true, where AT is the type annotation of
the element node, and the nilled property of the node is false.

Example: element(*, surgeon) matches any non-nilled element node whose
type annotation is surgeon (or is derived from surgeon), regardless of its
name.

6. element(*, TypeName ?) matches an element node regardless of its name,
if derives-from(AT, TypeName) is true, where AT is the type annotation of
the element node. The nilled property of the node may be either true or
false.

Example: element(*, surgeon?) matches any nilled or non-nilled element
node whose type annotation is surgeon (or is derived from surgeon),
regardless of its name.

2.5.4.4 Schema Element Test

A SchemaElementTest matches an element node against a corresponding
element declaration found in the in-scope element declarations. It takes the
following form:

schema-element(ElementName)

If the ElementName specified in the SchemaElementTest is not found in the in-

Page 43 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

scope element declarations, a static error is raised [err:XPST0008].

A SchemaElementTest matches a candidate element node if all three of the
following conditions are satisfied:

1. The name of the candidate node matches the specified ElementName or
matches the name of an element in a substitution group headed by an
element named ElementName.

2. derives-from(AT, ET) is true, where AT is the type annotation of the
candidate node and ET is the schema type declared for element
ElementName in the in-scope element declarations.

3. If the element declaration for ElementName in the in-scope element
declarations is not nillable, then the nilled property of the candidate node
is false.

Example: The SchemaElementTest schema-element(customer) matches a
candidate element node if customer is a top-level element declaration in the in-
scope element declarations, the name of the candidate node is customer or is in a
substitution group headed by customer, the type annotation of the candidate node
is the same as or derived from the schema type declared for the customer
element, and either the candidate node is not nilled or customer is declared to be
nillable.

2.5.4.5 Attribute Test

An AttributeTest is used to match an attribute node by its name and/or type
annotation. An AttributeTest any take any of the following forms. In these forms,
AttributeName need not be present in the in-scope attribute declarations, but
TypeName must be present in the in-scope schema types [err:XPST0008].

1. attribute() and attribute(*) match any single attribute node, regardless
of its name or type annotation.

2. attribute(AttributeName) matches any attribute node whose name is
AttributeName, regardless of its type annotation.

Example: attribute(price) matches any attribute node whose name is
price.

3. attribute(AttributeName, TypeName) matches an attribute node whose
name is AttributeName if derives-from(AT, TypeName) is true, where AT
is the type annotation of the attribute node.

Example: attribute(price, currency) matches an attribute node whose
name is price and whose type annotation is currency (or is derived from
currency).

4. attribute(*, TypeName) matches an attribute node regardless of its name,
if derives-from(AT, TypeName) is true, where AT is the type annotation of

Page 44 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

the attribute node.

Example: attribute(*, currency) matches any attribute node whose type
annotation is currency (or is derived from currency), regardless of its name.

2.5.4.6 Schema Attribute Test

A SchemaAttributeTest matches an attribute node against a corresponding
attribute declaration found in the in-scope attribute declarations. It takes the
following form:

schema-attribute(AttributeName)

If the AttributeName specified in the SchemaAttributeTest is not found in the in-
scope attribute declarations, a static error is raised [err:XPST0008].

A SchemaAttributeTest matches a candidate attribute node if both of the following
conditions are satisfied:

1. The name of the candidate node matches the specified AttributeName.

2. derives-from(AT, ET) is true, where AT is the type annotation of the
candidate node and ET is the schema type declared for attribute
AttributeName in the in-scope attribute declarations.

Example: The SchemaAttributeTest schema-attribute(color) matches a
candidate attribute node if color is a top-level attribute declaration in the in-scope
attribute declarations, the name of the candidate node is color, and the type
annotation of the candidate node is the same as or derived from the schema type
declared for the color attribute.

2.6 Comments

Comments may be used to provide informative annotation for a query, either in the
Prolog or in the Query Body. Comments are lexical constructs only, and do not
affect query processing.

Comments are strings, delimited by the symbols (: and :). Comments may be
nested.

A comment may be used anywhere ignorable whitespace is allowed (see A.2.4.1
Default Whitespace Handling).

[151] Comment ::= "(:" (CommentContents | Comment)* ":)"

[159] CommentContents ::= (Char+ - (Char* ('(:' | ':)') Char*))

Page 45 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

The following is an example of a comment:

(: Houston, we have a problem :)

3 Expressions

This section discusses each of the basic kinds of expression. Each kind of
expression has a name such as PathExpr, which is introduced on the left side of
the grammar production that defines the expression. Since XQuery is a
composable language, each kind of expression is defined in terms of other
expressions whose operators have a higher precedence. In this way, the
precedence of operators is represented explicitly in the grammar.

The order in which expressions are discussed in this document does not reflect
the order of operator precedence. In general, this document introduces the
simplest kinds of expressions first, followed by more complex expressions. For the
complete grammar, see Appendix [A XQuery Grammar].

[Definition: A query consists of one or more modules.] If a query is executable,
one of its modules has a Query Body containing an expression whose value is the
result of the query. An expression is represented in the XQuery grammar by the
symbol Expr.

The XQuery operator that has lowest precedence is the comma operator, which is
used to combine two operands to form a sequence. As shown in the grammar, a
general expression (Expr) can consist of multiple ExprSingle operands, separated
by commas. The name ExprSingle denotes an expression that does not contain a
top-level comma operator (despite its name, an ExprSingle may evaluate to a
sequence containing more than one item.)

The symbol ExprSingle is used in various places in the grammar where an
expression is not allowed to contain a top-level comma. For example, each of the
arguments of a function call must be an ExprSingle, because commas are used to
separate the arguments of a function call.

After the comma, the expressions that have next lowest precedence are
FLWORExpr, QuantifiedExpr, TypeswitchExpr, IfExpr, and OrExpr. Each of these
expressions is described in a separate section of this document.

[31] Expr ::= ExprSingle ("," ExprSingle)*

[32] ExprSingle ::= FLWORExpr
| QuantifiedExpr

| TypeswitchExpr

| IfExpr

| OrExpr

Page 46 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

3.1 Primary Expressions

[Definition: Primary expressions are the basic primitives of the language. They
include literals, variable references, context item expressions, constructors, and
function calls. A primary expression may also be created by enclosing any
expression in parentheses, which is sometimes helpful in controlling the
precedence of operators.] Constructors are described in 3.7 Constructors.

3.1.1 Literals

[Definition: A literal is a direct syntactic representation of an atomic value.]
XQuery supports two kinds of literals: numeric literals and string literals.

The value of a numeric literal containing no "." and no e or E character is an
atomic value of type xs:integer. The value of a numeric literal containing "." but
no e or E character is an atomic value of type xs:decimal. The value of a numeric
literal containing an e or E character is an atomic value of type xs:double. The
value of the numeric literal is determined by casting it to the appropriate type
according to the rules for casting from xs:untypedAtomic to a numeric type as

specified in Section 17.1.1 Casting from xs:string and xs:untypedAtomicFO.

The value of a string literal is an atomic value whose type is xs:string and
whose value is the string denoted by the characters between the delimiting
apostrophes or quotation marks. If the literal is delimited by apostrophes, two
adjacent apostrophes within the literal are interpreted as a single apostrophe.
Similarly, if the literal is delimited by quotation marks, two adjacent quotation
marks within the literal are interpreted as one quotation mark.

[84] PrimaryExpr ::= Literal | VarRef | ParenthesizedExpr |
ContextItemExpr | FunctionCall | OrderedExpr |

UnorderedExpr | Constructor

[85] Literal ::= NumericLiteral | StringLiteral

[86] NumericLiteral ::= IntegerLiteral | DecimalLiteral |
DoubleLiteral

[141] IntegerLiteral ::= Digits

[142] DecimalLiteral ::= ("." Digits) | (Digits "." [0-9]*)

[143] DoubleLiteral ::= (("." Digits) | (Digits ("." [0-9]*)?))
[eE] [+-]? Digits

[144] StringLiteral ::= ('"' (PredefinedEntityRef | CharRef |
EscapeQuot | [^"&])* '"') |

("'" (PredefinedEntityRef | CharRef |

EscapeApos | [^'&])* "'")

[145] PredefinedEntityRef ::= "&" ("lt" | "gt" | "amp" | "quot" |
"apos") ";"

[158] Digits ::= [0-9]+

Page 47 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

A string literal may contain a predefined entity reference. [Definition: A
predefined entity reference is a short sequence of characters, beginning with an
ampersand, that represents a single character that might otherwise have syntactic
significance.] Each predefined entity reference is replaced by the character it
represents when the string literal is processed. The predefined entity references
recognized by XQuery are as follows:

A string literal may also contain a character reference. [Definition: A character
reference is an XML-style reference to a [Unicode] character, identified by its
decimal or hexadecimal code point.] For example, the Euro symbol (€) can be
represented by the character reference €. Character references are
normatively defined in Section 4.1 of the XML specification (it is implementation-
defined whether the rules in [XML 1.0] or [XML 1.1] apply.) A static error
[err:XQST0090] is raised if a character reference does not identify a valid
character in the version of XML that is in use.

Here are some examples of literal expressions:

� "12.5" denotes the string containing the characters '1', '2', '.', and '5'.

� 12 denotes the xs:integer value twelve.

� 12.5 denotes the xs:decimal value twelve and one half.

� 125E2 denotes the xs:double value twelve thousand, five hundred.

� "He said, ""I don't like it.""" denotes a string containing two quotation
marks and one apostrophe.

� "Ben & Jerry's" denotes the xs:string value "Ben & Jerry's".

� "€99.50" denotes the xs:string value "€99.50".

The xs:boolean values true and false can be represented by calls to the built-in
functions fn:true() and fn:false(), respectively.

Values of other atomic types can be constructed by calling the constructor function
for the given type. The constructor functions for XML Schema built-in types are
defined in [XQuery 1.0 and XPath 2.0 Functions and Operators]. In general, the
name of a constructor function for a given type is the same as the name of the
type (including its namespace). For example:

Entity Reference Character Represented

< <

> >

& &

" "

' '

Page 48 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

� xs:integer("12") returns the integer value twelve.

� xs:date("2001-08-25") returns an item whose type is xs:date and whose
value represents the date 25th August 2001.

� xs:dayTimeDuration("PT5H") returns an item whose type is
xs:dayTimeDuration and whose value represents a duration of five hours.

Constructor functions can also be used to create special values that have no literal
representation, as in the following examples:

� xs:float("NaN") returns the special floating-point value, "Not a Number."

� xs:double("INF") returns the special double-precision value, "positive
infinity."

It is also possible to construct values of various types by using a cast expression.
For example:

� 9 cast as hatsize returns the atomic value 9 whose type is hatsize.

3.1.2 Variable References

[Definition: A variable reference is a QName preceded by a $-sign.] Two variable
references are equivalent if their local names are the same and their namespace
prefixes are bound to the same namespace URI in the statically known
namespaces. An unprefixed variable reference is in no namespace.

Every variable reference must match a name in the in-scope variables, which
include variables from the following sources:

1. A variable may be declared in a Prolog, in the current module or an
imported module. See 4 Modules and Prologs for a discussion of modules
and Prologs.

2. The in-scope variables may be augmented by implementation-defined
variables.

3. A variable may be bound by an XQuery expression. The kinds of
expressions that can bind variables are FLWOR expressions (3.8 FLWOR
Expressions), quantified expressions (3.11 Quantified Expressions), and
typeswitch expressions (3.12.2 Typeswitch). Function calls also bind
values to the formal parameters of functions before executing the function
body.

Every variable binding has a static scope. The scope defines where references to

[87] VarRef ::= "$" VarName

[88] VarName ::= QName

Page 49 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

the variable can validly occur. It is a static error [err:XPST0008] to reference a
variable that is not in scope. If a variable is bound in the static context for an
expression, that variable is in scope for the entire expression.

A reference to a variable that was declared external, but was not bound to a
value by the external environment, raises a dynamic error [err:XPDY0002].

If a variable reference matches two or more variable bindings that are in scope,
then the reference is taken as referring to the inner binding, that is, the one whose
scope is smaller. At evaluation time, the value of a variable reference is the value
of the expression to which the relevant variable is bound. The scope of a variable
binding is defined separately for each kind of expression that can bind variables.

3.1.3 Parenthesized Expressions

Parentheses may be used to enforce a particular evaluation order in expressions
that contain multiple operators. For example, the expression (2 + 4) * 5
evaluates to thirty, since the parenthesized expression (2 + 4) is evaluated first
and its result is multiplied by five. Without parentheses, the expression 2 + 4 * 5
evaluates to twenty-two, because the multiplication operator has higher
precedence than the addition operator.

Empty parentheses are used to denote an empty sequence, as described in 3.3.1
Constructing Sequences.

3.1.4 Context Item Expression

A context item expression evaluates to the context item, which may be either a
node (as in the expression fn:doc("bib.xml")/books/book[fn:count(./author)
>1]) or an atomic value (as in the expression (1 to 100)[. mod 5 eq 0]).

If the context item is undefined, a context item expression raises a dynamic error
[err:XPDY0002].

3.1.5 Function Calls

[Definition: The built-in functions supported by XQuery are defined in [XQuery
1.0 and XPath 2.0 Functions and Operators].] Additional functions may be
declared in a Prolog, imported from a library module, or provided by the external
environment as part of the static context.

[89] ParenthesizedExpr ::= "(" Expr? ")"

[90] ContextItemExpr ::= "."

Page 50 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

A function call consists of a QName followed by a parenthesized list of zero or
more expressions, called arguments. If the QName in the function call has no
namespace prefix, it is considered to be in the default function namespace.

If the expanded QName and number of arguments in a function call do not match
the name and arity of a function signature in the static context, a static error is
raised [err:XPST0017].

A function call is evaluated as follows:

1. Argument expressions are evaluated, producing argument values. The order
of argument evaluation is implementation-dependent and a function need not
evaluate an argument if the function can evaluate its body without evaluating
that argument.

2. Each argument value is converted by applying the function conversion rules
listed below.

3. If the function is a built-in function, it is evaluated using the converted
argument values. The result is either an instance of the function's declared
return type or a dynamic error. Errors raised by built-in functions are defined
in [XQuery 1.0 and XPath 2.0 Functions and Operators].

4. If the function is a user-declared function that has a body, the converted
argument values are bound to the formal parameters of the function, and the
function body is evaluated. The value returned by the function body is then
converted to the declared return type of the function by applying the function
conversion rules.

When a converted argument value is bound to a function parameter, the
argument value retains its most specific dynamic type, even though this type
may be derived from the type of the formal parameter. For example, a
function with a parameter $p of type xs:decimal can be invoked with an
argument of type xs:integer, which is derived from xs:decimal. During the
processing of this function invocation, the dynamic type of $p inside the body
of the function is considered to be xs:integer. Similarly, the value returned
by a function retains its most specific type, which may be derived from the
declared return type of the function. For example, a function that has a
declared return type of xs:decimal may in fact return a value of dynamic type
xs:integer.

During evaluation of a function body, the static context and dynamic context
for expression evaluation are defined by the module in which the function is
declared, which is not necessarily the same as the module in which the
function is called. For example, the variables in scope while evaluating a
function body are defined by in-scope variables of the module that declares
the function rather than the module in which the function is called. During
evaluation of a function body, the focus (context item, context position, and

[93] FunctionCall ::= QName "(" (ExprSingle ("," ExprSingle)*)? ")"

Page 51 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

context size) is undefined, except where it is defined by some expression
inside the function body.

5. If the function is a user-declared external function, its function
implementation is invoked with the converted argument values. The result is
either a value of the declared type or an implementation-defined error (see
2.2.5 Consistency Constraints).

The function conversion rules are used to convert an argument value or a return
value to its expected type; that is, to the declared type of the function parameter or
return. The expected type is expressed as a sequence type. The function
conversion rules are applied to a given value as follows:

� If the expected type is a sequence of an atomic type (possibly with an
occurrence indicator *, +, or ?), the following conversions are applied:

1. Atomization is applied to the given value, resulting in a sequence of
atomic values.

2. Each item in the atomic sequence that is of type xs:untypedAtomic is
cast to the expected atomic type. For built-in functions where the
expected type is specified as numeric, arguments of type
xs:untypedAtomic are cast to xs:double.

3. For each numeric item in the atomic sequence that can be promoted to
the expected atomic type using numeric promotion as described in B.1
Type Promotion, the promotion is done.

4. For each item of type xs:anyURI in the atomic sequence that can be
promoted to the expected atomic type using URI promotion as
described in B.1 Type Promotion, the promotion is done.

� If, after the above conversions, the resulting value does not match the
expected type according to the rules for SequenceType Matching, a type
error is raised [err:XPTY0004]. If the function call takes place in a module
other than the module in which the function is defined, this rule must be
satisfied in both the module where the function is called and the module
where the function is defined (the test is repeated because the two modules
may have different in-scope schema definitions.) Note that the rules for
SequenceType Matching permit a value of a derived type to be substituted
for a value of its base type.

Since the arguments of a function call are separated by commas, any argument
expression that contains a top-level comma operator must be enclosed in
parentheses. Here are some illustrative examples of function calls:

� my:three-argument-function(1, 2, 3) denotes a function call with three
arguments.

� my:two-argument-function((1, 2), 3) denotes a function call with two
arguments, the first of which is a sequence of two values.

Page 52 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

� my:two-argument-function(1, ()) denotes a function call with two
arguments, the second of which is an empty sequence.

� my:one-argument-function((1, 2, 3)) denotes a function call with one
argument that is a sequence of three values.

� my:one-argument-function(()) denotes a function call with one argument
that is an empty sequence.

� my:zero-argument-function() denotes a function call with zero arguments.

3.2 Path Expressions

[Definition: A path expression can be used to locate nodes within trees. A path
expression consists of a series of one or more steps, separated by "/" or "//", and
optionally beginning with "/" or "//".] An initial "/" or "//" is an abbreviation for one
or more initial steps that are implicitly added to the beginning of the path
expression, as described below.

A path expression consisting of a single step is evaluated as described in 3.2.1
Steps.

A "/" at the beginning of a path expression is an abbreviation for the initial step
fn:root(self::node()) treat as document-node()/ (however, if the "/" is the
entire path expression, the trailing "/" is omitted from the expansion.) The effect of
this initial step is to begin the path at the root node of the tree that contains the
context node. If the context item is not a node, a type error is raised
[err:XPTY0020]. At evaluation time, if the root node above the context node is not
a document node, a dynamic error is raised [err:XPDY0050].

A "//" at the beginning of a path expression is an abbreviation for the initial steps
fn:root(self::node()) treat as document-node()/descendant-or-self::node

()/ (however, "//" by itself is not a valid path expression [err:XPST0003].) The
effect of these initial steps is to establish an initial node sequence that contains the
root of the tree in which the context node is found, plus all nodes descended from
this root. This node sequence is used as the input to subsequent steps in the path
expression. If the context item is not a node, a type error is raised [err:XPTY0020].
At evaluation time, if the root node above the context node is not a document
node, a dynamic error is raised [err:XPDY0050].

Note:

The descendants of a node do not include attribute nodes .

[68] PathExpr ::= ("/" RelativePathExpr?)
| ("//" RelativePathExpr)

| RelativePathExpr

[69] RelativePathExpr ::= StepExpr (("/" | "//") StepExpr)*

Page 53 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

Each non-initial occurrence of "//" in a path expression is expanded as described
in 3.2.4 Abbreviated Syntax, leaving a sequence of steps separated by "/". This
sequence of steps is then evaluated from left to right. Each operation E1/E2 is
evaluated as follows: Expression E1 is evaluated, and if the result is not a (possibly
empty) sequence of nodes, a type error is raised [err:XPTY0019]. Each node
resulting from the evaluation of E1 then serves in turn to provide an inner focus
for an evaluation of E2, as described in 2.1.2 Dynamic Context. The sequences
resulting from all the evaluations of E2 are combined as follows:

1. If every evaluation of E2 returns a (possibly empty) sequence of nodes, these
sequences are combined, and duplicate nodes are eliminated based on
node identity. If ordering mode is ordered, the resulting node sequence is
returned in document order; otherwise it is returned in implementation-
dependent order.

2. If every evaluation of E2 returns a (possibly empty) sequence of atomic
values, these sequences are concatenated and returned. If ordering mode is
ordered, the returned sequence preserves the orderings within and among
the subsequences generated by the evaluations of E2; otherwise the order of
the returned sequence is implementation-dependent.

3. If the multiple evaluations of E2 return at least one node and at least one
atomic value, a type error is raised [err:XPTY0018].

Note:

Since each step in a path provides context nodes for the following step, in
effect, only the last step in a path is allowed to return a sequence of atomic
values.

As an example of a path expression, child::div1/child::para selects the para
element children of the div1 element children of the context node, or, in other
words, the para element grandchildren of the context node that have div1 parents.

Note:

The "/" character can be used either as a complete path expression or as the
beginning of a longer path expression such as "/*". Also, "*" is both the
multiply operator and a wildcard in path expressions. This can cause parsing
difficulties when "/" appears on the left hand side of "*". This is resolved using
the leading-lone-slash constraint. For example, "/*" and "/ *" are valid path
expressions containing wildcards, but "/*5" and "/ * 5" raise syntax errors.
Parentheses must be used when "/" is used on the left hand side of an
operator, as in "(/) * 5". Similarly, "4 + / * 5" raises a syntax error, but "4 +
(/) * 5" is a valid expression. The expression "4 + /" is also valid, because /
does not occur on the left hand side of the operator.

Page 54 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

3.2.1 Steps

[Definition: A step is a part of a path expression that generates a sequence of
items and then filters the sequence by zero or more predicates. The value of the
step consists of those items that satisfy the predicates, working from left to right. A
step may be either an axis step or a filter expression.] Filter expressions are
described in 3.3.2 Filter Expressions.

[Definition: An axis step returns a sequence of nodes that are reachable from the
context node via a specified axis. Such a step has two parts: an axis, which
defines the "direction of movement" for the step, and a node test, which selects
nodes based on their kind, name, and/or type annotation.] If the context item is a
node, an axis step returns a sequence of zero or more nodes; otherwise, a type
error is raised [err:XPTY0020]. If ordering mode is ordered, the resulting node
sequence is returned in document order; otherwise it is returned in
implementation-dependent order. An axis step may be either a forward step or a
reverse step, followed by zero or more predicates.

In the abbreviated syntax for a step, the axis can be omitted and other shorthand
notations can be used as described in 3.2.4 Abbreviated Syntax.

The unabbreviated syntax for an axis step consists of the axis name and node test
separated by a double colon. The result of the step consists of the nodes
reachable from the context node via the specified axis that have the node kind,
name, and/or type annotation specified by the node test. For example, the step
child::para selects the para element children of the context node: child is the
name of the axis, and para is the name of the element nodes to be selected on
this axis. The available axes are described in 3.2.1.1 Axes. The available node
tests are described in 3.2.1.2 Node Tests. Examples of steps are provided in
3.2.3 Unabbreviated Syntax and 3.2.4 Abbreviated Syntax.

3.2.1.1 Axes

[70] StepExpr ::= FilterExpr | AxisStep

[71] AxisStep ::= (ReverseStep | ForwardStep) PredicateList

[72] ForwardStep ::= (ForwardAxis NodeTest) | AbbrevForwardStep

[75] ReverseStep ::= (ReverseAxis NodeTest) | AbbrevReverseStep

[82] PredicateList ::= Predicate*

[73] ForwardAxis ::= ("child" "::")
| ("descendant" "::")

| ("attribute" "::")

| ("self" "::")

| ("descendant-or-self" "::")

| ("following-sibling" "::")

| ("following" "::")

Page 55 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

XQuery supports the following axes (subject to limitations as described in 5.2.4
Full Axis Feature):

� The child axis contains the children of the context node, which are the
nodes returned by the dm:children accessor in [XQuery/XPath Data Model
(XDM)].

Note:

Only document nodes and element nodes have children. If the context
node is any other kind of node, or if the context node is an empty
document or element node, then the child axis is an empty sequence.
The children of a document node or element node may be element,
processing instruction, comment, or text nodes. Attribute and document
nodes can never appear as children.

� the descendant axis is defined as the transitive closure of the child axis; it
contains the descendants of the context node (the children, the children of
the children, and so on)

� the parent axis contains the sequence returned by the dm:parent accessor
in [XQuery/XPath Data Model (XDM)], which returns the parent of the
context node, or an empty sequence if the context node has no parent

Note:

An attribute node may have an element node as its parent, even though
the attribute node is not a child of the element node.

� the ancestor axis is defined as the transitive closure of the parent axis; it
contains the ancestors of the context node (the parent, the parent of the
parent, and so on)

Note:

The ancestor axis includes the root node of the tree in which the context
node is found, unless the context node is the root node.

� the following-sibling axis contains the context node's following siblings,
those children of the context node's parent that occur after the context node
in document order; if the context node is an attribute node, the following-
sibling axis is empty

� the preceding-sibling axis contains the context node's preceding siblings,
those children of the context node's parent that occur before the context
node in document order; if the context node is an attribute node, the
preceding-sibling axis is empty

� the following axis contains all nodes that are descendants of the root of the
tree in which the context node is found, are not descendants of the context

[76] ReverseAxis ::= ("parent" "::")
| ("ancestor" "::")

| ("preceding-sibling" "::")

| ("preceding" "::")

| ("ancestor-or-self" "::")

Page 56 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

node, and occur after the context node in document order

� the preceding axis contains all nodes that are descendants of the root of the
tree in which the context node is found, are not ancestors of the context
node, and occur before the context node in document order

� the attribute axis contains the attributes of the context node, which are the
nodes returned by the dm:attributes accessor in [XQuery/XPath Data
Model (XDM)]; the axis will be empty unless the context node is an element

� the self axis contains just the context node itself

� the descendant-or-self axis contains the context node and the descendants
of the context node

� the ancestor-or-self axis contains the context node and the ancestors of
the context node; thus, the ancestor-or-self axis will always include the root
node

Axes can be categorized as forward axes and reverse axes. An axis that only
ever contains the context node or nodes that are after the context node in
document order is a forward axis. An axis that only ever contains the context node
or nodes that are before the context node in document order is a reverse axis.

The parent, ancestor, ancestor-or-self, preceding, and preceding-sibling axes
are reverse axes; all other axes are forward axes. The ancestor, descendant,
following, preceding and self axes partition a document (ignoring attribute
nodes): they do not overlap and together they contain all the nodes in the
document.

[Definition: Every axis has a principal node kind. If an axis can contain elements,
then the principal node kind is element; otherwise, it is the kind of nodes that the
axis can contain.] Thus:

� For the attribute axis, the principal node kind is attribute.

� For all other axes, the principal node kind is element.

3.2.1.2 Node Tests

[Definition: A node test is a condition that must be true for each node selected by
a step.] The condition may be based on the kind of the node (element, attribute,
text, document, comment, or processing instruction), the name of the node, or (in
the case of element, attribute, and document nodes), the type annotation of the
node.

[78] NodeTest ::= KindTest | NameTest

[79] NameTest ::= QName | Wildcard

[80] Wildcard ::= "*"
| (NCName ":" "*")

Page 57 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

[Definition: A node test that consists only of a QName or a Wildcard is called a
name test.] A name test is true if and only if the kind of the node is the principal
node kind for the step axis and the expanded QName of the node is equal (as
defined by the eq operator) to the expanded QName specified by the name test.
For example, child::para selects the para element children of the context node; if
the context node has no para children, it selects an empty set of nodes.
attribute::abc:href selects the attribute of the context node with the QName
abc:href; if the context node has no such attribute, it selects an empty set of
nodes.

A QName in a name test is resolved into an expanded QName using the statically
known namespaces in the expression context. It is a static error [err:XPST0081] if
the QName has a prefix that does not correspond to any statically known
namespace. An unprefixed QName, when used as a name test on an axis whose
principal node kind is element, has the namespace URI of the default element/type
namespace in the expression context; otherwise, it has no namespace URI.

A name test is not satisfied by an element node whose name does not match the
expanded QName of the name test, even if it is in a substitution group whose head
is the named element.

A node test * is true for any node of the principal node kind of the step axis. For
example, child::* will select all element children of the context node, and
attribute::* will select all attributes of the context node.

A node test can have the form NCName:*. In this case, the prefix is expanded in the
same way as with a QName, using the statically known namespaces in the static
context. If the prefix is not found in the statically known namespaces, a static error
is raised [err:XPST0081]. The node test is true for any node of the principal node
kind of the step axis whose expanded QName has the namespace URI to which
the prefix is bound, regardless of the local part of the name.

A node test can also have the form *:NCName. In this case, the node test is true for
any node of the principal node kind of the step axis whose local name matches the
given NCName, regardless of its namespace or lack of a namespace.

[Definition: An alternative form of a node test called a kind test can select nodes
based on their kind, name, and type annotation.] The syntax and semantics of a
kind test are described in 2.5.3 SequenceType Syntax and 2.5.4 SequenceType
Matching. When a kind test is used in a node test, only those nodes on the
designated axis that match the kind test are selected. Shown below are several
examples of kind tests that might be used in path expressions:

� node() matches any node.

| ("*" ":" NCName)

Page 58 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

� text() matches any text node.

� comment() matches any comment node.

� element() matches any element node.

� schema-element(person) matches any element node whose name is person
(or is in the substitution group headed by person), and whose type
annotation is the same as (or is derived from) the declared type of the person
element in the in-scope element declarations.

� element(person) matches any element node whose name is person,
regardless of its type annotation.

� element(person, surgeon) matches any non-nilled element node whose
name is person, and whose type annotation is surgeon or is derived from
surgeon.

� element(*, surgeon) matches any non-nilled element node whose type
annotation is surgeon (or is derived from surgeon), regardless of its name.

� attribute() matches any attribute node.

� attribute(price) matches any attribute whose name is price, regardless of
its type annotation.

� attribute(*, xs:decimal) matches any attribute whose type annotation is
xs:decimal (or is derived from xs:decimal), regardless of its name.

� document-node() matches any document node.

� document-node(element(book)) matches any document node whose content
consists of a single element node that satisfies the kind test element(book),
interleaved with zero or more comments and processing instructions.

3.2.2 Predicates

[Definition: A predicate consists of an expression, called a predicate expression,
enclosed in square brackets. A predicate serves to filter a sequence, retaining
some items and discarding others.] In the case of multiple adjacent predicates, the
predicates are applied from left to right, and the result of applying each predicate
serves as the input sequence for the following predicate.

For each item in the input sequence, the predicate expression is evaluated using
an inner focus, defined as follows: The context item is the item currently being
tested against the predicate. The context size is the number of items in the input
sequence. The context position is the position of the context item within the input
sequence. For the purpose of evaluating the context position within a predicate,
the input sequence is considered to be sorted as follows: into document order if
the predicate is in a forward-axis step, into reverse document order if the predicate
is in a reverse-axis step, or in its original order if the predicate is not in a step.

[83] Predicate ::= "[" Expr "]"

Page 59 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

For each item in the input sequence, the result of the predicate expression is
coerced to an xs:boolean value, called the predicate truth value, as described
below. Those items for which the predicate truth value is true are retained, and
those for which the predicate truth value is false are discarded.

The predicate truth value is derived by applying the following rules, in order:

1. If the value of the predicate expression is a singleton atomic value of a
numeric type or derived from a numeric type, the predicate truth value is
true if the value of the predicate expression is equal (by the eq operator) to
the context position, and is false otherwise. [Definition: A predicate whose
predicate expression returns a numeric type is called a numeric predicate.]

Note:

In a region of a query where ordering mode is unordered, the result of a
numeric predicate is nondeterministic, as explained in 3.9 Ordered and
Unordered Expressions.

2. Otherwise, the predicate truth value is the effective boolean value of the
predicate expression.

Here are some examples of axis steps that contain predicates:

� This example selects the second chapter element that is a child of the
context node:

child::chapter[2]

� This example selects all the descendants of the context node that are
elements named "toy" and whose color attribute has the value "red":

descendant::toy[attribute::color = "red"]

� This example selects all the employee children of the context node that have
both a secretary child element and an assistant child element:

child::employee[secretary][assistant]

Note:

When using predicates with a sequence of nodes selected using a reverse
axis, it is important to remember that the the context positions for such a
sequence are assigned in reverse document order. For example,
preceding::foo[1] returns the first qualifying foo element in reverse
document order, because the predicate is part of an axis step using a reverse
axis. By contrast, (preceding::foo)[1] returns the first qualifying foo element
in document order, because the parentheses cause (preceding::foo) to be
parsed as a primary expression in which context positions are assigned in
document order. Similarly, ancestor::*[1] returns the nearest ancestor

Page 60 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

element, because the ancestor axis is a reverse axis, whereas (ancestor::*)
[1] returns the root element (first ancestor in document order).

The fact that a reverse-axis step assigns context positions in reverse
document order for the purpose of evaluating predicates does not alter the
fact that the final result of the step (when in ordered mode) is always in
document order.

3.2.3 Unabbreviated Syntax

This section provides a number of examples of path expressions in which the axis
is explicitly specified in each step. The syntax used in these examples is called the
unabbreviated syntax. In many common cases, it is possible to write path
expressions more concisely using an abbreviated syntax, as explained in 3.2.4
Abbreviated Syntax.

� child::para selects the para element children of the context node

� child::* selects all element children of the context node

� child::text() selects all text node children of the context node

� child::node() selects all the children of the context node. Note that no
attribute nodes are returned, because attributes are not children.

� attribute::name selects the name attribute of the context node

� attribute::* selects all the attributes of the context node

� parent::node() selects the parent of the context node. If the context node is
an attribute node, this expression returns the element node (if any) to which
the attribute node is attached.

� descendant::para selects the para element descendants of the context node

� ancestor::div selects all div ancestors of the context node

� ancestor-or-self::div selects the div ancestors of the context node and, if
the context node is a div element, the context node as well

� descendant-or-self::para selects the para element descendants of the
context node and, if the context node is a para element, the context node as
well

� self::para selects the context node if it is a para element, and otherwise
returns an empty sequence

� child::chapter/descendant::para selects the para element descendants of
the chapter element children of the context node

� child::*/child::para selects all para grandchildren of the context node

� / selects the root of the tree that contains the context node, but raises a
dynamic error if this root is not a document node

� /descendant::para selects all the para elements in the same document as
the context node

Page 61 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

� /descendant::list/child::member selects all the member elements that have
a list parent and that are in the same document as the context node

� child::para[fn:position() = 1] selects the first para child of the context
node

� child::para[fn:position() = fn:last()] selects the last para child of the
context node

� child::para[fn:position() = fn:last()-1] selects the last but one para
child of the context node

� child::para[fn:position() > 1] selects all the para children of the context
node other than the first para child of the context node

� following-sibling::chapter[fn:position() = 1]selects the next chapter
sibling of the context node

� preceding-sibling::chapter[fn:position() = 1]selects the previous
chapter sibling of the context node

� /descendant::figure[fn:position() = 42] selects the forty-second figure
element in the document containing the context node

� /child::book/child::chapter[fn:position() = 5]/child::section

[fn:position() = 2] selects the second section of the fifth chapter of the
book whose parent is the document node that contains the context node

� child::para[attribute::type eq "warning"]selects all para children of the
context node that have a type attribute with value warning

� child::para[attribute::type eq 'warning'][fn:position() = 5]selects
the fifth para child of the context node that has a type attribute with value
warning

� child::para[fn:position() = 5][attribute::type eq "warning"]selects
the fifth para child of the context node if that child has a type attribute with
value warning

� child::chapter[child::title = 'Introduction']selects the chapter
children of the context node that have one or more title children whose
typed value is equal to the string Introduction

� child::chapter[child::title] selects the chapter children of the context
node that have one or more title children

� child::*[self::chapter or self::appendix] selects the chapter and
appendix children of the context node

� child::*[self::chapter or self::appendix][fn:position() = fn:last()]
selects the last chapter or appendix child of the context node

3.2.4 Abbreviated Syntax

[74] AbbrevForwardStep ::= "@"? NodeTest

[77] AbbrevReverseStep ::= ".."

Page 62 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

The abbreviated syntax permits the following abbreviations:

1. The attribute axis attribute:: can be abbreviated by @. For example, a path
expression para[@type="warning"] is short for child::para
[attribute::type="warning"] and so selects para children with a type
attribute with value equal to warning.

2. If the axis name is omitted from an axis step, the default axis is child unless
the axis step contains an AttributeTest or SchemaAttributeTest; in that case,
the default axis is attribute. For example, the path expression
section/para is an abbreviation for child::section/child::para, and the
path expression section/@id is an abbreviation for
child::section/attribute::id. Similarly, section/attribute(id) is an
abbreviation for child::section/attribute::attribute(id). Note that the
latter expression contains both an axis specification and a node test.

3. Each non-initial occurrence of // is effectively replaced by /descendant-or-
self::node()/ during processing of a path expression. For example,
div1//para is short for child::div1/descendant-or-self::node
()/child::para and so will select all para descendants of div1 children.

Note:

The path expression //para[1] does not mean the same as the path
expression /descendant::para[1]. The latter selects the first
descendant para element; the former selects all descendant para
elements that are the first para children of their respective parents.

4. A step consisting of .. is short for parent::node(). For example, ../title is
short for parent::node()/child::title and so will select the title children
of the parent of the context node.

Note:

The expression ., known as a context item expression, is a primary
expression, and is described in 3.1.4 Context Item Expression.

Here are some examples of path expressions that use the abbreviated syntax:

� para selects the para element children of the context node

� * selects all element children of the context node

� text() selects all text node children of the context node

� @name selects the name attribute of the context node

� @* selects all the attributes of the context node

� para[1] selects the first para child of the context node

� para[fn:last()] selects the last para child of the context node

� */para selects all para grandchildren of the context node

� /book/chapter[5]/section[2] selects the second section of the fifth

Page 63 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

chapter of the book whose parent is the document node that contains the
context node

� chapter//para selects the para element descendants of the chapter element
children of the context node

� //para selects all the para descendants of the root document node and thus
selects all para elements in the same document as the context node

� //@version selects all the version attribute nodes that are in the same
document as the context node

� //list/member selects all the member elements in the same document as the
context node that have a list parent

� .//para selects the para element descendants of the context node

� .. selects the parent of the context node

� ../@lang selects the lang attribute of the parent of the context node

� para[@type="warning"] selects all para children of the context node that
have a type attribute with value warning

� para[@type="warning"][5] selects the fifth para child of the context node
that has a type attribute with value warning

� para[5][@type="warning"] selects the fifth para child of the context node if
that child has a type attribute with value warning

� chapter[title="Introduction"] selects the chapter children of the context
node that have one or more title children whose typed value is equal to the
string Introduction

� chapter[title] selects the chapter children of the context node that have
one or more title children

� employee[@secretary and @assistant] selects all the employee children of
the context node that have both a secretary attribute and an assistant
attribute

� book/(chapter|appendix)/section selects every section element that has a
parent that is either a chapter or an appendix element, that in turn is a child
of a book element that is a child of the context node.

� If E is any expression that returns a sequence of nodes, then the expression
E/. returns the same nodes in document order, with duplicates eliminated
based on node identity.

3.3 Sequence Expressions

XQuery supports operators to construct, filter, and combine sequences of items.
Sequences are never nested—for example, combining the values 1, (2, 3), and
() into a single sequence results in the sequence (1, 2, 3).

3.3.1 Constructing Sequences

Page 64 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

[Definition: One way to construct a sequence is by using the comma operator,
which evaluates each of its operands and concatenates the resulting sequences,
in order, into a single result sequence.] Empty parentheses can be used to denote
an empty sequence.

A sequence may contain duplicate atomic values or nodes, but a sequence is
never an item in another sequence. When a new sequence is created by
concatenating two or more input sequences, the new sequence contains all the
items of the input sequences and its length is the sum of the lengths of the input
sequences.

Note:

In places where the grammar calls for ExprSingle, such as the arguments of a
function call, any expression that contains a top-level comma operator must
be enclosed in parentheses.

Here are some examples of expressions that construct sequences:

� The result of this expression is a sequence of five integers:

(10, 1, 2, 3, 4)

� This expression combines four sequences of length one, two, zero, and two,
respectively, into a single sequence of length five. The result of this
expression is the sequence 10, 1, 2, 3, 4.

(10, (1, 2), (), (3, 4))

� The result of this expression is a sequence containing all salary children of
the context node followed by all bonus children.

(salary, bonus)

� Assuming that $price is bound to the value 10.50, the result of this
expression is the sequence 10.50, 10.50.

($price, $price)

A range expression can be used to construct a sequence of consecutive
integers. Each of the operands of the to operator is converted as though it was an
argument of a function with the expected parameter type xs:integer?. If either
operand is an empty sequence, or if the integer derived from the first operand is
greater than the integer derived from the second operand, the result of the range
expression is an empty sequence. If the two operands convert to the same integer,

[31] Expr ::= ExprSingle ("," ExprSingle)*

[49] RangeExpr ::= AdditiveExpr ("to" AdditiveExpr)?

Page 65 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

the result of the range expression is that integer. Otherwise, the result is a
sequence containing the two integer operands and every integer between the two
operands, in increasing order.

� This example uses a range expression as one operand in constructing a
sequence. It evaluates to the sequence 10, 1, 2, 3, 4.

(10, 1 to 4)

� This example constructs a sequence of length one containing the single
integer 10.

10 to 10

� The result of this example is a sequence of length zero.

15 to 10

� This example uses the fn:reverse function to construct a sequence of six
integers in decreasing order. It evaluates to the sequence 15, 14, 13, 12,
11, 10.

fn:reverse(10 to 15)

3.3.2 Filter Expressions

[Definition: A filter expression consists simply of a primary expression followed
by zero or more predicates. The result of the filter expression consists of the items
returned by the primary expression, filtered by applying each predicate in turn,
working from left to right.] If no predicates are specified, the result is simply the
result of the primary expression. The ordering of the items returned by a filter
expression is the same as their order in the result of the primary expression.
Context positions are assigned to items based on their ordinal position in the result
sequence. The first context position is 1.

Here are some examples of filter expressions:

� Given a sequence of products in a variable, return only those products
whose price is greater than 100.

$products[price gt 100]

� List all the integers from 1 to 100 that are divisible by 5. (See 3.3.1
Constructing Sequences for an explanation of the to operator.)

(1 to 100)[. mod 5 eq 0]

[81] FilterExpr ::= PrimaryExpr PredicateList

[82] PredicateList ::= Predicate*

Page 66 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

� The result of the following expression is the integer 25:

(21 to 29)[5]

� The following example returns the fifth through ninth items in the sequence
bound to variable $orders.

$orders[fn:position() = (5 to 9)]

� The following example illustrates the use of a filter expression as a step in a
path expression. It returns the last chapter or appendix within the book
bound to variable $book:

$book/(chapter | appendix)[fn:last()]

� The following example also illustrates the use of a filter expression as a step
in a path expression. It returns the element node within the specified
document whose ID value is tiger:

fn:doc("zoo.xml")/fn:id('tiger')

3.3.3 Combining Node Sequences

XQuery provides the following operators for combining sequences of nodes:

� The union and | operators are equivalent. They take two node sequences as
operands and return a sequence containing all the nodes that occur in either
of the operands.

� The intersect operator takes two node sequences as operands and returns
a sequence containing all the nodes that occur in both operands.

� The except operator takes two node sequences as operands and returns a
sequence containing all the nodes that occur in the first operand but not in
the second operand.

All these operators eliminate duplicate nodes from their result sequences based
on node identity. If ordering mode is ordered, the resulting sequence is returned in
document order; otherwise it is returned in implementation-dependent order.

If an operand of union, intersect, or except contains an item that is not a node, a
type error is raised [err:XPTY0004].

Here are some examples of expressions that combine sequences. Assume the
existence of three element nodes that we will refer to by symbolic names A, B, and

[52] UnionExpr ::= IntersectExceptExpr (("union" | "|")
IntersectExceptExpr)*

[53] IntersectExceptExpr ::= InstanceofExpr (("intersect" | "except")
InstanceofExpr)*

Page 67 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

C. Assume that the variables $seq1, $seq2 and $seq3 are bound to the following
sequences of these nodes:

� $seq1 is bound to (A, B)

� $seq2 is bound to (A, B)

� $seq3 is bound to (B, C)

Then:

� $seq1 union $seq2 evaluates to the sequence (A, B).

� $seq2 union $seq3 evaluates to the sequence (A, B, C).

� $seq1 intersect $seq2 evaluates to the sequence (A, B).

� $seq2 intersect $seq3 evaluates to the sequence containing B only.

� $seq1 except $seq2 evaluates to the empty sequence.

� $seq2 except $seq3 evaluates to the sequence containing A only.

In addition to the sequence operators described here, [XQuery 1.0 and XPath 2.0
Functions and Operators] includes functions for indexed access to items or sub-
sequences of a sequence, for indexed insertion or removal of items in a sequence,
and for removing duplicate items from a sequence.

3.4 Arithmetic Expressions

XQuery provides arithmetic operators for addition, subtraction, multiplication,
division, and modulus, in their usual binary and unary forms.

A subtraction operator must be preceded by whitespace if it could otherwise be
interpreted as part of the previous token. For example, a-b will be interpreted as a
name, but a - b and a -b will be interpreted as arithmetic expressions. (See A.2.4
Whitespace Rules for further details on whitespace handling.)

The first step in evaluating an arithmetic expression is to evaluate its operands.
The order in which the operands are evaluated is implementation-dependent.

Each operand is evaluated by applying the following steps, in order:

[50] AdditiveExpr ::= MultiplicativeExpr (("+" | "-")
MultiplicativeExpr)*

[51] MultiplicativeExpr ::= UnionExpr (("*" | "div" | "idiv" | "mod")
UnionExpr)*

[58] UnaryExpr ::= ("-" | "+")* ValueExpr

[59] ValueExpr ::= ValidateExpr | PathExpr | ExtensionExpr

Page 68 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

1. Atomization is applied to the operand. The result of this operation is called
the atomized operand.

2. If the atomized operand is an empty sequence, the result of the arithmetic
expression is an empty sequence, and the implementation need not evaluate
the other operand or apply the operator. However, an implementation may
choose to evaluate the other operand in order to determine whether it raises
an error.

3. If the atomized operand is a sequence of length greater than one, a type
error is raised [err:XPTY0004].

4. If the atomized operand is of type xs:untypedAtomic, it is cast to xs:double.
If the cast fails, a dynamic error is raised. [err:FORG0001]

After evaluation of the operands, if the types of the operands are a valid
combination for the given arithmetic operator, the operator is applied to the
operands, resulting in an atomic value or a dynamic error (for example, an error
might result from dividing by zero.) The combinations of atomic types that are
accepted by the various arithmetic operators, and their respective result types, are
listed in B.2 Operator Mapping together with the operator functions that define
the semantics of the operator for each type combination, including the dynamic
errors that can be raised by the operator. The definitions of the operator functions
are found in [XQuery 1.0 and XPath 2.0 Functions and Operators].

If the types of the operands, after evaluation, are not a valid combination for the
given operator, according to the rules in B.2 Operator Mapping, a type error is
raised [err:XPTY0004].

XQuery supports two division operators named div and idiv. Each of these
operators accepts two operands of any numeric type. As described in [XQuery 1.0
and XPath 2.0 Functions and Operators], $arg1 idiv $arg2 is equivalent to
($arg1 div $arg2) cast as xs:integer? except for error cases.

Here are some examples of arithmetic expressions:

� The first expression below returns the xs:decimal value -1.5, and the
second expression returns the xs:integer value -1:

-3 div 2

-3 idiv 2

� Subtraction of two date values results in a value of type xs:dayTimeDuration:

$emp/hiredate - $emp/birthdate

� This example illustrates the difference between a subtraction operator and a
hyphen:

$unit-price - $unit-discount

Page 69 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

� Unary operators have higher precedence than binary operators, subject of
course to the use of parentheses. Therefore, the following two examples
have different meanings:

-$bellcost + $whistlecost

-($bellcost + $whistlecost)

Note:

Multiple consecutive unary arithmetic operators are permitted by XQuery for
compatibility with [XPath 1.0].

3.5 Comparison Expressions

Comparison expressions allow two values to be compared. XQuery provides three
kinds of comparison expressions, called value comparisons, general comparisons,
and node comparisons.

3.5.1 Value Comparisons

The value comparison operators are eq, ne, lt, le, gt, and ge. Value comparisons
are used for comparing single values.

The first step in evaluating a value comparison is to evaluate its operands. The
order in which the operands are evaluated is implementation-dependent. Each
operand is evaluated by applying the following steps, in order:

1. Atomization is applied to the operand. The result of this operation is called
the atomized operand.

2. If the atomized operand is an empty sequence, the result of the value
comparison is an empty sequence, and the implementation need not
evaluate the other operand or apply the operator. However, an
implementation may choose to evaluate the other operand in order to
determine whether it raises an error.

3. If the atomized operand is a sequence of length greater than one, a type
error is raised [err:XPTY0004].

4. If the atomized operand is of type xs:untypedAtomic, it is cast to xs:string.

Note:

[48] ComparisonExpr ::= RangeExpr ((ValueComp
| GeneralComp

| NodeComp) RangeExpr)?

[61] ValueComp ::= "eq" | "ne" | "lt" | "le" | "gt" | "ge"

[60] GeneralComp ::= "=" | "!=" | "<" | "<=" | ">" | ">="

[62] NodeComp ::= "is" | "<<" | ">>"

Page 70 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

The purpose of this rule is to make value comparisons transitive. Users
should be aware that the general comparison operators have a different
rule for casting of xs:untypedAtomic operands. Users should also be
aware that transitivity of value comparisons may be compromised by
loss of precision during type conversion (for example, two xs:integer
values that differ slightly may both be considered equal to the same
xs:float value because xs:float has less precision than xs:integer).

Next, if possible, the two operands are converted to their least common type by a
combination of type promotion and subtype substitution. For example, if the
operands are of type hatsize (derived from xs:integer) and shoesize (derived
from xs:float), their least common type is xs:float.

Finally, if the types of the operands are a valid combination for the given operator,
the operator is applied to the operands. The combinations of atomic types that are
accepted by the various value comparison operators, and their respective result
types, are listed in B.2 Operator Mapping together with the operator functions
that define the semantics of the operator for each type combination. The
definitions of the operator functions are found in [XQuery 1.0 and XPath 2.0
Functions and Operators].

Informally, if both atomized operands consist of exactly one atomic value, then the
result of the comparison is true if the value of the first operand is (equal, not
equal, less than, less than or equal, greater than, greater than or equal) to the
value of the second operand; otherwise the result of the comparison is false.

If the types of the operands, after evaluation, are not a valid combination for the
given operator, according to the rules in B.2 Operator Mapping, a type error is
raised [err:XPTY0004].

Here are some examples of value comparisons:

� The following comparison atomizes the node(s) that are returned by the
expression $book/author. The comparison is true only if the result of
atomization is the value "Kennedy" as an instance of xs:string or
xs:untypedAtomic. If the result of atomization is an empty sequence, the
result of the comparison is an empty sequence. If the result of atomization is
a sequence containing more than one value, a type error is raised
[err:XPTY0004].

$book1/author eq "Kennedy"

� The following path expression contains a predicate that selects products
whose weight is greater than 100. For any product that does not have a
weight subelement, the value of the predicate is the empty sequence, and
the product is not selected. This example assumes that weight is a validated
element with a numeric type.

Page 71 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

//product[weight gt 100]

� The following comparisons are true because, in each case, the two
constructed nodes have the same value after atomization, even though they
have different identities and/or names:

<a>5 eq <a>5

<a>5 eq 5

� The following comparison is true if my:hatsize and my:shoesize are both
user-defined types that are derived by restriction from a primitive numeric
type:

my:hatsize(5) eq my:shoesize(5)

� The following comparison is true. The eq operator compares two QNames by
performing codepoint-comparisons of their namespace URIs and their local
names, ignoring their namespace prefixes.

fn:QName("http://example.com/ns1", "this:color")

 eq fn:QName("http://example.com/ns1", "that:color")

3.5.2 General Comparisons

The general comparison operators are =, !=, <, <=, >, and >=. General comparisons
are existentially quantified comparisons that may be applied to operand
sequences of any length. The result of a general comparison that does not raise
an error is always true or false.

A general comparison is evaluated by applying the following rules, in order:

1. Atomization is applied to each operand. After atomization, each operand is a
sequence of atomic values.

2. The result of the comparison is true if and only if there is a pair of atomic
values, one in the first operand sequence and the other in the second
operand sequence, that have the required magnitude relationship.
Otherwise the result of the comparison is false. The magnitude
relationship between two atomic values is determined by applying the
following rules. If a cast operation called for by these rules is not successful,
a dynamic error is raised. [err:FORG0001]

Note:

The purpose of these rules is to preserve compatibility with XPath 1.0, in
which (for example) x < 17 is a numeric comparison if x is an untyped
value. Users should be aware that the value comparison operators have
different rules for casting of xs:untypedAtomic operands.

a. If one of the atomic values is an instance of xs:untypedAtomic and the

Page 72 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

other is an instance of a numeric type, then the xs:untypedAtomic
value is cast to the type xs:double.

b. If one of the atomic values is an instance of xs:untypedAtomic and the
other is an instance of xs:untypedAtomic or xs:string, then the
xs:untypedAtomic value (or values) is (are) cast to the type xs:string.

c. If one of the atomic values is an instance of xs:untypedAtomic and the
other is not an instance of xs:string, xs:untypedAtomic, or any
numeric type, then the xs:untypedAtomic value is cast to the dynamic
type of the other value.

d. After performing the conversions described above, the atomic values
are compared using one of the value comparison operators eq, ne, lt,
le, gt, or ge, depending on whether the general comparison operator
was =, !=, <, <=, >, or >=. The values have the required magnitude
relationship if and only if the result of this value comparison is true.

When evaluating a general comparison in which either operand is a sequence of
items, an implementation may return true as soon as it finds an item in the first
operand and an item in the second operand that have the required magnitude
relationship. Similarly, a general comparison may raise a dynamic error as soon
as it encounters an error in evaluating either operand, or in comparing a pair of
items from the two operands. As a result of these rules, the result of a general
comparison is not deterministic in the presence of errors.

Here are some examples of general comparisons:

� The following comparison is true if the typed value of any author subelement
of $book1 is "Kennedy" as an instance of xs:string or xs:untypedAtomic:

$book1/author = "Kennedy"

� The following example contains three general comparisons. The value of the
first two comparisons is true, and the value of the third comparison is false.
This example illustrates the fact that general comparisons are not transitive.

(1, 2) = (2, 3)

(2, 3) = (3, 4)

(1, 2) = (3, 4)

� The following example contains two general comparisons, both of which are
true. This example illustrates the fact that the = and != operators are not
inverses of each other.

(1, 2) = (2, 3)

(1, 2) != (2, 3)

� Suppose that $a, $b, and $c are bound to element nodes with type
annotation xs:untypedAtomic, with string values "1", "2", and "2.0"
respectively. Then ($a, $b) = ($c, 3.0) returns false, because $b and $c

Page 73 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

are compared as strings. However, ($a, $b) = ($c, 2.0) returns true,
because $b and 2.0 are compared as numbers.

3.5.3 Node Comparisons

Node comparisons are used to compare two nodes, by their identity or by their
document order. The result of a node comparison is defined by the following rules:

1. The operands of a node comparison are evaluated in implementation-
dependent order.

2. If either operand is an empty sequence, the result of the comparison is an
empty sequence, and the implementation need not evaluate the other
operand or apply the operator. However, an implementation may choose to
evaluate the other operand in order to determine whether it raises an error.

3. Each operand must be either a single node or an empty sequence; otherwise
a type error is raised [err:XPTY0004].

4. A comparison with the is operator is true if the two operand nodes have the
same identity, and are thus the same node; otherwise it is false. See
[XQuery/XPath Data Model (XDM)] for a definition of node identity.

5. A comparison with the << operator returns true if the left operand node
precedes the right operand node in document order; otherwise it returns
false.

6. A comparison with the >> operator returns true if the left operand node
follows the right operand node in document order; otherwise it returns false.

Here are some examples of node comparisons:

� The following comparison is true only if the left and right sides each evaluate
to exactly the same single node:

/books/book[isbn="1558604820"] is /books/book[call="QA76.9 C3845"]

� The following comparison is false because each constructed node has its
own identity:

<a>5 is <a>5

� The following comparison is true only if the node identified by the left side
occurs before the node identified by the right side in document order:

/transactions/purchase[parcel="28-451"]

 << /transactions/sale[parcel="33-870"]

3.6 Logical Expressions

A logical expression is either an and-expression or an or-expression. If a

Page 74 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

logical expression does not raise an error, its value is always one of the boolean
values true or false.

The first step in evaluating a logical expression is to find the effective boolean
value of each of its operands (see 2.4.3 Effective Boolean Value).

The value of an and-expression is determined by the effective boolean values
(EBV's) of its operands, as shown in the following table:

The value of an or-expression is determined by the effective boolean values
(EBV's) of its operands, as shown in the following table:

The order in which the operands of a logical expression are evaluated is
implementation-dependent. The tables above are defined in such a way that an or-
expression can return true if the first expression evaluated is true, and it can raise
an error if evaluation of the first expression raises an error. Similarly, an and-
expression can return false if the first expression evaluated is false, and it can
raise an error if evaluation of the first expression raises an error. As a result of

[46] OrExpr ::= AndExpr ("or" AndExpr)*

[47] AndExpr ::= ComparisonExpr ("and" ComparisonExpr)*

AND:
EBV2 =
true

EBV2 = false error in EBV2

EBV1 =
true

true false error

EBV1 =
false

false false
either false or
error

error in
EBV1

error
either false or
error

error

OR: EBV2 = true EBV2 =
false

error in EBV2

EBV1 = true true true
either true or
error

EBV1 =
false

true false error

error in
EBV1

either true or
error

error error

Page 75 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

these rules, a logical expression is not deterministic in the presence of errors, as
illustrated in the examples below.

Here are some examples of logical expressions:

� The following expressions return true:

1 eq 1 and 2 eq 2

1 eq 1 or 2 eq 3

� The following expression may return either false or raise a dynamic error:

1 eq 2 and 3 idiv 0 = 1

� The following expression may return either true or raise a dynamic error:

1 eq 1 or 3 idiv 0 = 1

� The following expression must raise a dynamic error:

1 eq 1 and 3 idiv 0 = 1

In addition to and- and or-expressions, XQuery provides a function named fn:not
that takes a general sequence as parameter and returns a boolean value. The
fn:not function is defined in [XQuery 1.0 and XPath 2.0 Functions and Operators].
The fn:not function reduces its parameter to an effective boolean value. It then
returns true if the effective boolean value of its parameter is false, and false if
the effective boolean value of its parameter is true. If an error is encountered in
finding the effective boolean value of its operand, fn:not raises the same error.

3.7 Constructors

XQuery provides constructors that can create XML structures within a query.
Constructors are provided for element, attribute, document, text, comment, and
processing instruction nodes. Two kinds of constructors are provided: direct
constructors, which use an XML-like notation, and computed constructors,
which use a notation based on enclosed expressions.

[94] Constructor ::= DirectConstructor
| ComputedConstructor

[95] DirectConstructor ::= DirElemConstructor
| DirCommentConstructor

| DirPIConstructor

[96] DirElemConstructor ::= "<" QName DirAttributeList ("/>" | (">"
DirElemContent* "</" QName S? ">"))

[101] DirElemContent ::= DirectConstructor
| CDataSection

| CommonContent

Page 76 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

This section contains a conceptual description of the semantics of various kinds of
constructor expressions. An XQuery implementation is free to use any
implementation technique that produces the same result as the processing steps
described in this section.

3.7.1 Direct Element Constructors

An element constructor creates an element node. [Definition: A direct element
constructor is a form of element constructor in which the name of the constructed
element is a constant.] Direct element constructors are based on standard XML
notation. For example, the following expression is a direct element constructor that
creates a book element containing an attribute and some nested elements:

<book isbn="isbn-0060229357">

 <title>Harold and the Purple Crayon</title>

 <author>

 <first>Crockett</first>

 <last>Johnson</last>

 </author>

</book>

If the element name in a direct element constructor has a namespace prefix, the
namespace prefix is resolved to a namespace URI using the statically known
namespaces. If the element name has no namespace prefix, it is implicitly

| ElementContentChar

[148] ElementContentChar ::= Char - [{}<&]

[102] CommonContent ::= PredefinedEntityRef | CharRef | "{{" |
"}}" | EnclosedExpr

[107] CDataSection ::= "<![CDATA[" CDataSectionContents "]]>"

[108] CDataSectionContents ::= (Char* - (Char* ']]>' Char*))

[97] DirAttributeList ::= (S (QName S? "=" S?
DirAttributeValue)?)*

[98] DirAttributeValue ::= ('"' (EscapeQuot |
QuotAttrValueContent)* '"')

| ("'" (EscapeApos |

AposAttrValueContent)* "'")

[99] QuotAttrValueContent ::= QuotAttrContentChar
| CommonContent

[100] AposAttrValueContent ::= AposAttrContentChar
| CommonContent

[149] QuotAttrContentChar ::= Char - ["{}<&]

[150] AposAttrContentChar ::= Char - ['{}<&]

[146] EscapeQuot ::= '""'

[147] EscapeApos ::= "''"

[29] EnclosedExpr ::= "{" Expr "}"

Page 77 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

qualified by the default element/type namespace. Note that both the statically
known namespaces and the default element/type namespace may be affected by
namespace declaration attributes found inside the element constructor. The
namespace prefix of the element name is retained after expansion of the QName,
as described in [XQuery/XPath Data Model (XDM)]. The resulting expanded
QName becomes the node-name property of the constructed element node.

In a direct element constructor, the name used in the end tag must exactly match
the name used in the corresponding start tag, including its prefix or absence of a
prefix.

In a direct element constructor, curly braces { } delimit enclosed expressions,
distinguishing them from literal text. Enclosed expressions are evaluated and
replaced by their value, as illustrated by the following example:

<example>

 <p> Here is a query. </p>

 <eg> $b/title </eg>

 <p> Here is the result of the query. </p>

 <eg>{ $b/title }</eg>

</example>

The above query might generate the following result (whitespace has been added
for readability to this result and other result examples in this document):

<example>

 <p> Here is a query. </p>

 <eg> $b/title </eg>

 <p> Here is the result of the query. </p>

 <eg><title>Harold and the Purple Crayon</title></eg>

</example>

Since XQuery uses curly braces to denote enclosed expressions, some
convention is needed to denote a curly brace used as an ordinary character. For
this purpose, a pair of identical curly brace characters within the content of an
element or attribute are interpreted by XQuery as a single curly brace character
(that is, the pair "{{" represents the character "{" and the pair "}}" represents the
character "}".) Alternatively, the character references { and } can be
used to denote curly brace characters. A single left curly brace ("{") is interpreted
as the beginning delimiter for an enclosed expression. A single right curly brace
("}") without a matching left curly brace is treated as a static error [err:XPST0003].

The result of an element constructor is a new element node, with its own node
identity. All the attribute and descendant nodes of the new element node are also
new nodes with their own identities, even if they are copies of existing nodes.

Page 78 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

3.7.1.1 Attributes

The start tag of a direct element constructor may contain one or more attributes.
As in XML, each attribute is specified by a name and a value. In a direct element
constructor, the name of each attribute is specified by a constant QName, and the
value of the attribute is specified by a string of characters enclosed in single or
double quotes. As in the main content of the element constructor, an attribute
value may contain expressions enclosed in curly braces, which are evaluated and
replaced by their value during processing of the element constructor.

Each attribute in a direct element constructor creates a new attribute node, with its
own node identity, whose parent is the constructed element node. However, note
that namespace declaration attributes (see 3.7.1.2 Namespace Declaration
Attributes) do not create attribute nodes.

If an attribute name has a namespace prefix, the prefix is resolved to a
namespace URI using the statically known namespaces. If the attribute name has
no namespace prefix, the attribute is in no namespace. Note that the statically
known namespaces used in resolving an attribute name may be affected by
namespace declaration attributes that are found inside the same element
constructor. The namespace prefix of the attribute name is retained after
expansion of the QName, as described in [XQuery/XPath Data Model (XDM)]. The
resulting expanded QName becomes the node-name property of the constructed
attribute node.

If the attributes in a direct element constructor do not have distinct expanded
QNames as their respective node-name properties, a static error is raised
[err:XQST0040].

Conceptually, an attribute (other than a namespace declaration attribute) in a
direct element constructor is processed by the following steps:

1. Each consecutive sequence of literal characters in the attribute content is
treated as a string containing those characters. Attribute value normalization
is then applied to normalize whitespace and expand character references
and predefined entity references. An XQuery processor that supports XML
1.0 uses the rules for attribute value normalization in Section 3.3.3 of [XML
1.0]; an XQuery processor that supports XML 1.1 uses the rules for attribute
value normalization in Section 3.3.3 of [XML 1.1]. In either case, the
normalization rules are applied as though the type of the attribute were
CDATA (leading and trailing whitespace characters are not stripped.) The
choice between XML 1.0 and XML 1.1 rules is implementation-defined.

2. Each enclosed expression is converted to a string as follows:

a. Atomization is applied to the value of the enclosed expression,
converting it to a sequence of atomic values.

b. If the result of atomization is an empty sequence, the result is the zero-

Page 79 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

length string. Otherwise, each atomic value in the atomized sequence
is cast into a string.

c. The individual strings resulting from the previous step are merged into
a single string by concatenating them with a single space character
between each pair.

3. Adjacent strings resulting from the above steps are concatenated with no
intervening blanks. The resulting string becomes the string-value property
of the attribute node. The attribute node is given a type annotation (type-
name property) of xs:untypedAtomic (this type annotation may change if the
parent element is validated). The typed-value property of the attribute node
is the same as its string-value, as an instance of xs:untypedAtomic.

4. The parent property of the attribute node is set to the element node
constructed by the direct element constructor that contains this attribute.

5. If the attribute name is xml:id, then xml:id processing is performed as
defined in [XML ID]. This ensures that the attribute has the type xs:ID and
that its value is properly normalized. If an error is encountered during xml:id
processing, an implementation MAY raise a dynamic error [err:XQDY0091].

6. If the attribute name is xml:id, the is-id property of the resulting attribute
node is set to true; otherwise the is-id property is set to false. The is-
idrefs property of the attribute node is unconditionally set to false.

� Example:

<shoe size="7"/>

The string value of the size attribute is "7".

� Example:

<shoe size="{7}"/>

The string value of the size attribute is "7".

� Example:

<shoe size="{()}"/>

The string value of the size attribute is the zero-length string.

� Example:

<chapter ref="[{1, 5 to 7, 9}]"/>

The string value of the ref attribute is "[1 5 6 7 9]".

� Example:

<shoe size="As big as {$hat/@size}"/>

The string value of the size attribute is the string "As big as ", concatenated
with the string value of the node denoted by the expression $hat/@size.

Page 80 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

3.7.1.2 Namespace Declaration Attributes

The names of a constructed element and its attributes may be QNames that
include namespace prefixes. Namespace prefixes can be bound to namespaces
in the Prolog or by namespace declaration attributes. It is a static error to use a
namespace prefix that has not been bound to a namespace [err:XPST0081].

[Definition: A namespace declaration attribute is used inside a direct element
constructor. Its purpose is to bind a namespace prefix or to set the default
element/type namespace for the constructed element node, including its
attributes.] Syntactically, a namespace declaration attribute has the form of an
attribute with namespace prefix xmlns, or with name xmlns and no namespace
prefix. The value of a namespace declaration attribute must be a URILiteral;
otherwise a static error is raised [err:XQST0022]. All the namespace declaration
attributes of a given element must have distinct names [err:XQST0071]. Each
namespace declaration attribute is processed as follows:

� The local part of the attribute name is interpreted as a namespace prefix and
the value of the attribute is interpreted as a namespace URI. This prefix and
URI are added to the statically known namespaces of the constructor
expression (overriding any existing binding of the given prefix), and are also
added as a namespace binding to the in-scope namespaces of the
constructed element. If the namespace URI is a zero-length string and the
implementation supports [XML Names 1.1], any existing namespace binding
for the given prefix is removed from the in-scope namespaces of the
constructed element and from the statically known namespaces of the
constructor expression. If the namespace URI is a zero-length string and the
implementation does not support [XML Names 1.1], a static error is raised
[err:XQST0085]. It is implementation-defined whether an implementation
supports [XML Names] or [XML Names 1.1].

� If the name of the namespace declaration attribute is xmlns with no prefix,
the value of the attribute is interpreted as a namespace URI. This URI
specifies the default element/type namespace of the constructor expression
(overriding any existing default), and is added (with no prefix) to the in-scope
namespaces of the constructed element (overriding any existing namespace
binding with no prefix). If the namespace URI is a zero-length string, the
default element/type namespace of the constructor expression is set to
"none," and any no-prefix namespace binding is removed from the in-scope
namespaces of the constructed element.

� It is a static error [err:XQST0070] if a namespace declaration attribute binds
a namespace URI to the predefined prefix xmlns. It is also a static error
[err:XQST0070] if a namespace declaration attribute binds a namespace URI
other than http://www.w3.org/XML/1998/namespace to the prefix xml, or
binds a prefix other than xml to the namespace URI
http://www.w3.org/XML/1998/namespace.

Page 81 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

A namespace declaration attribute does not cause an attribute node to be created.

The following examples illustrate namespace declaration attributes:

� In this element constructor, a namespace declaration attribute is used to set
the default element/type namespace to http://example.org/animals:

<cat xmlns = "http://example.org/animals">

 <breed>Persian</breed>

</cat>

� In this element constructor, namespace declaration attributes are used to
bind the namespace prefixes metric and english:

<box xmlns:metric = "http://example.org/metric/units"

 xmlns:english = "http://example.org/english/units">

 <height> <metric:meters>3</metric:meters> </height>

 <width> <english:feet>6</english:feet> </width>

 <depth> <english:inches>18</english:inches> </depth>

</box>

3.7.1.3 Content

The part of a direct element constructor between the start tag and the end tag is
called the content of the element constructor. This content may consist of text
characters (parsed as ElementContentChar), nested direct constructors,
CdataSections, character and predefined entity references, and expressions
enclosed in curly braces. In general, the value of an enclosed expression may be
any sequence of nodes and/or atomic values. Enclosed expressions can be used
in the content of an element constructor to compute both the content and the
attributes of the constructed node.

Conceptually, the content of an element constructor is processed as follows:

1. The content is evaluated to produce a sequence of nodes called the content
sequence, as follows:

a. If the boundary-space policy in the static context is strip, boundary
whitespace is identified and deleted (see 3.7.1.4 Boundary
Whitespace for a definition of boundary whitespace.)

b. Predefined entity references and character references are expanded
into their referenced strings, as described in 3.1.1 Literals. Characters
inside a CDataSection, including special characters such as < and &,
are treated as literal characters rather than as markup characters
(except for the sequence]]>, which terminates the CDataSection).

c. Each consecutive sequence of literal characters evaluates to a single
text node containing the characters.

d. Each nested direct constructor is evaluated according to the rules in

Page 82 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

3.7.1 Direct Element Constructors or 3.7.2 Other Direct
Constructors, resulting in a new element, comment, or processing
instruction node. Then:

i. The parent property of the resulting node is then set to the newly
constructed element node.

ii. The base-uri property of the resulting node, and of each of its
descendants, is set to be the same as that of its new parent,
unless it (the child node) has an xml:base attribute, in which case
its base-uri property is set to the value of that attribute, resolved
(if it is relative) against the base-uri property of its new parent
node.

e. Enclosed expressions are evaluated as follows:

i. For each adjacent sequence of one or more atomic values
returned by an enclosed expression, a new text node is
constructed, containing the result of casting each atomic value to
a string, with a single space character inserted between adjacent
values.

Note:

The insertion of blank characters between adjacent values
applies even if one or both of the values is a zero-length
string.

ii. For each node returned by an enclosed expression, a new copy
is made of the given node and all nodes that have the given node
as an ancestor, collectively referred to as copied nodes. The
properties of the copied nodes are as follows:

A. Each copied node receives a new node identity.

B. The parent, children, and attributes properties of the
copied nodes are set so as to preserve their inter-node
relationships. For the topmost node (the node directly
returned by the enclosed expression), the parent property
is set to the node constructed by this constructor.

C. If construction mode in the static context is strip:

I. If the copied node is an element node, its type-name
property is set to xs:untyped. Its nilled, is-id, and
is-idrefs properties are set to false.

II. If the copied node is an attribute node, its type-name
property is set to xs:untypedAtomic. Its is-idrefs
property is set to false. Its is-id property is set to
true if the qualified name of the attribute node is
xml:id; otherwise it is set to false.

III. The string-value of each copied element and
attribute node remains unchanged, and its typed-
value becomes equal to its string-value as an

Page 83 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

instance of xs:untypedAtomic.

Note:

Implementations that store only the typed value of
a node are required at this point to convert the
typed value to a string form.

On the other hand, if construction mode in the static context
is preserve, the type-name, nilled, string-value, typed-
value, is-id, and is-idrefs properties of the copied nodes
are preserved.

D. The in-scope-namespaces property of a copied element
node is determined by the following rules. In applying these
rules, the default namespace or absence of a default
namespace is treated like any other namespace binding:

I. If copy-namespaces mode specifies preserve, all in-
scope-namespaces of the original element are
retained in the new copy. If copy-namespaces mode
specifies no-preserve, the new copy retains only
those in-scope namespaces of the original element
that are used in the names of the element and its
attributes. It is a type error [err:XQTY0086] in this
case if the typed value of the copied element or of any
of its attributes is namespace-sensitive. [Definition: A
value is namespace-sensitive if it includes an item
whose dynamic type is xs:QName or xs:NOTATION or is
derived by restriction from xs:QName or xs:NOTATION.]

Note:

Error [err:XQTY0086] can occur only if
construction mode is preserve, since otherwise
the typed value of the copied node is never
namespace-sensitive.

II. If copy-namespaces mode specifies inherit, the
copied node inherits all the in-scope namespaces of
the constructed node, augmented and overridden by
the in-scope namespaces of the original element that
were preserved by the preceding rule. If copy-
namespaces mode specifies no-inherit, the copied
node does not inherit any in-scope namespaces from
the constructed node.

E. When an element or processing instruction node is copied,
its base-uri property is set to be the same as that of its new
parent, with the following exception: if a copied element
node has an xml:base attribute, its base-uri property is set
to the value of that attribute, resolved (if it is relative)
against the base-uri property of the new parent node.

Page 84 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

F. All other properties of the copied nodes are preserved.

2. If the content sequence contains a document node, the document node is
replaced in the content sequence by its children.

3. Adjacent text nodes in the content sequence are merged into a single text
node by concatenating their contents, with no intervening blanks. After
concatenation, any text node whose content is a zero-length string is deleted
from the content sequence.

4. If the content sequence contains an attribute node following a node that is
not an attribute node, a type error is raised [err:XQTY0024].

5. The properties of the newly constructed element node are determined as
follows:

a. node-name is the expanded QName resulting from resolving the
element name in the start tag, including its original namespace prefix (if
any), as described in 3.7.1 Direct Element Constructors.

b. parent is set to empty.

c. attributes consist of all the attributes specified in the start tag as
described in 3.7.1.1 Attributes, together with all the attribute nodes in
the content sequence, in implementation-dependent order. Note that
the parent property of each of these attribute nodes has been set to
the newly constructed element node. If two or more attributes have the
same node-name, a dynamic error is raised [err:XQDY0025]. If an
attribute named xml:space has a value other than preserve or default,
a dynamic error MAY be raised [err:XQDY0092].

d. children consist of all the element, text, comment, and processing
instruction nodes in the content sequence. Note that the parent
property of each of these nodes has been set to the newly constructed
element node.

e. base-uri is set to the following value:

i. If the constructed node has an attribute named xml:base, then
the value of this attribute, resolved if it is relative against the base
URI in the static context. The value of the xml:base attribute is
normalized as described in [XML Base].

ii. Otherwise, the value of the base URI in the static context.

f. in-scope-namespaces consist of all the namespace bindings resulting
from namespace declaration attributes as described in 3.7.1.2
Namespace Declaration Attributes, and possibly additional
namespace bindings as described in 3.7.4 In-scope Namespaces of a
Constructed Element.

g. The nilled property is false.

h. The string-value property is equal to the concatenated contents of the
text-node descendants in document order. If there are no text-node
descendants, the string-value property is a zero-length string.

Page 85 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

i. The typed-value property is equal to the string-value property, as an
instance of xs:untypedAtomic.

j. If construction mode in the static context is strip, the type-name
property is xs:untyped. On the other hand, if construction mode is
preserve, the type-name property is xs:anyType.

k. The is-id and is-idrefs properties are set to false.

� Example:

<a>{1}

The constructed element node has one child, a text node containing the
value "1".

� Example:

<a>{1, 2, 3}

The constructed element node has one child, a text node containing the
value "1 2 3".

� Example:

<c>{1}{2}{3}</c>

The constructed element node has one child, a text node containing the
value "123".

� Example:

{1, "2", "3"}

The constructed element node has one child, a text node containing the
value "1 2 3".

� Example:

<fact>I saw 8 cats.</fact>

The constructed element node has one child, a text node containing the
value "I saw 8 cats.".

� Example:

<fact>I saw {5 + 3} cats.</fact>

The constructed element node has one child, a text node containing the
value "I saw 8 cats.".

� Example:

<fact>I saw <howmany>{5 + 3}</howmany> cats.</fact>

The constructed element node has three children: a text node containing "I
saw ", a child element node named howmany, and a text node containing "

Page 86 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

cats.". The child element node in turn has a single text node child containing
the value "8".

3.7.1.4 Boundary Whitespace

In a direct element constructor, whitespace characters may appear in the content
of the constructed element. In some cases, enclosed expressions and/or nested
elements may be separated only by whitespace characters. For example, in the
expression below, the end-tag </title> and the start-tag <author> are separated
by a newline character and four space characters:

<book isbn="isbn-0060229357">

 <title>Harold and the Purple Crayon</title>

 <author>

 <first>Crockett</first>

 <last>Johnson</last>

 </author>

</book>

[Definition: Boundary whitespace is a sequence of consecutive whitespace
characters within the content of a direct element constructor, that is delimited at
each end either by the start or end of the content, or by a DirectConstructor, or by
an EnclosedExpr. For this purpose, characters generated by character references
such as or by CdataSections are not considered to be whitespace
characters.]

The boundary-space policy in the static context controls whether boundary
whitespace is preserved by element constructors. If boundary-space policy is
strip, boundary whitespace is not considered significant and is discarded. On the
other hand, if boundary-space policy is preserve, boundary whitespace is
considered significant and is preserved.

� Example:

<cat>

 <breed>{$b}</breed>

 <color>{$c}</color>

</cat>

The constructed cat element node has two child element nodes named
breed and color. Whitespace surrounding the child elements will be stripped
away by the element constructor if boundary-space policy is strip.

� Example:

<a> {"abc"}

If boundary-space policy is strip, this example is equivalent to <a>abc.
However, if boundary-space policy is preserve, this example is equivalent to

Page 87 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

<a> abc .

� Example:

<a> z {"abc"}

Since the whitespace surrounding the z is not boundary whitespace, it is
always preserved. This example is equivalent to <a> z abc.

� Example:

<a> {"abc"}

This example is equivalent to <a> abc, regardless of the boundary-
space policy, because the space generated by the character reference is not
treated as a whitespace character.

� Example:

<a>{" "}

This example constructs an element containing two space characters,
regardless of the boundary-space policy, because whitespace inside an
enclosed expression is never considered to be boundary whitespace.

Note:

Element constructors treat attributes named xml:space as ordinary attributes.
An xml:space attribute does not affect the handling of whitespace by an
element constructor.

3.7.2 Other Direct Constructors

XQuery allows an expression to generate a processing instruction node or a
comment node. This can be accomplished by using a direct processing
instruction constructor or a direct comment constructor. In each case, the
syntax of the constructor expression is based on the syntax of a similar construct
in XML.

A direct processing instruction constructor creates a processing instruction node
whose target property is PITarget and whose content property is DirPIContents.
The base-uri property of the node is empty. The parent property of the node is
empty.

[105] DirPIConstructor ::= "<?" PITarget (S DirPIContents)? "?>"

[106] DirPIContents ::= (Char* - (Char* '?>' Char*))

[103] DirCommentConstructor ::= "<!--" DirCommentContents "-->"

[104] DirCommentContents ::= ((Char - '-') | ('-' (Char - '-')))*

Page 88 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

The PITarget of a processing instruction may not consist of the characters "XML"
in any combination of upper and lower case. The DirPIContents of a processing
instruction may not contain the string "?>".

The following example illustrates a direct processing instruction constructor:

<?format role="output" ?>

A direct comment constructor creates a comment node whose content property is
DirCommentContents. Its parent property is empty.

The DirCommentContents of a comment may not contain two consecutive
hyphens or end with a hyphen. These rules are syntactically enforced by the
grammar shown above.

The following example illustrates a direct comment constructor:

<!-- Tags are ignored in the following section -->

Note:

A direct comment constructor is different from a comment, since a direct
comment constructor actually constructs a comment node, whereas a
comment is simply used in documenting a query and is not evaluated.

3.7.3 Computed Constructors

An alternative way to create nodes is by using a computed constructor. A
computed constructor begins with a keyword that identifies the type of node to be
created: element, attribute, document, text, processing-instruction, or
comment.

For those kinds of nodes that have names (element, attribute, and processing
instruction nodes), the keyword that specifies the node kind is followed by the
name of the node to be created. This name may be specified either as a QName
or as an expression enclosed in braces. [Definition: When an expression is used to
specify the name of a constructed node, that expression is called the name
expression of the constructor.]

[109] ComputedConstructor ::= CompDocConstructor
| CompElemConstructor

| CompAttrConstructor

| CompTextConstructor

| CompCommentConstructor

| CompPIConstructor

Page 89 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

[Definition: The final part of a computed constructor is an expression enclosed in
braces, called the content expression of the constructor, that generates the
content of the node.]

The following example illustrates the use of computed element and attribute
constructors in a simple case where the names of the constructed nodes are
constants. This example generates exactly the same result as the first example in
3.7.1 Direct Element Constructors:

element book {

 attribute isbn {"isbn-0060229357" },

 element title { "Harold and the Purple Crayon"},

 element author {

 element first { "Crockett" },

 element last {"Johnson" }

 }

}

3.7.3.1 Computed Element Constructors

[Definition: A computed element constructor creates an element node, allowing
both the name and the content of the node to be computed.]

If the keyword element is followed by a QName, it is expanded using the statically
known namespaces, and the resulting expanded QName is used as the node-name
property of the constructed element node. If expansion of the QName is not
successful, a static error is raised [err:XPST0081].

If the keyword element is followed by a name expression, the name expression is
processed as follows:

1. Atomization is applied to the value of the name expression. If the result of
atomization is not a single atomic value of type xs:QName, xs:string, or
xs:untypedAtomic, a type error is raised [err:XPTY0004].

2. If the atomized value of the name expression is of type xs:QName, that
expanded QName is used as the node-name property of the constructed
element, retaining the prefix part of the QName.

3. If the atomized value of the name expression is of type xs:string or
xs:untypedAtomic, that value is converted to an expanded QName. If the
string value contains a namespace prefix, that prefix is resolved to a
namespace URI using the statically known namespaces. If the string value
contains no namespace prefix, it is treated as a local name in the default

[111] CompElemConstructor ::= "element" (QName | ("{" Expr "}")) "{"
ContentExpr? "}"

[112] ContentExpr ::= Expr

Page 90 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

element/type namespace. The resulting expanded QName is used as the
node-name property of the constructed element, retaining the prefix part of the
QName. If conversion of the atomized name expression to an expanded
QName is not successful, a dynamic error is raised [err:XQDY0074].

The content expression of a computed element constructor (if present) is
processed in exactly the same way as an enclosed expression in the content of a
direct element constructor, as described in Step 1e of 3.7.1.3 Content. The result
of processing the content expression is a sequence of nodes called the content
sequence. If the content expression is absent, the content sequence is an empty
sequence.

Processing of the computed element constructor proceeds as follows:

1. Adjacent text nodes in the content sequence are merged into a single text
node by concatenating their contents, with no intervening blanks. After
concatenation, any text node whose content is a zero-length string is deleted
from the content sequence.

2. If the content sequence contains a document node, the document node is
replaced in the content sequence by its children.

3. If the content sequence contains an attribute node following a node that is
not an attribute node, a type error is raised [err:XQTY0024].

4. The properties of the newly constructed element node are determined as
follows:

a. node-name is the expanded QName resulting from processing the
specified QName or name expression, as described above.

b. parent is empty.

c. attributes consist of all the attribute nodes in the content sequence, in
implementation-dependent order. Note that the parent property of each
of these attribute nodes has been set to the newly constructed element
node. If two or more attributes have the same node-name, a dynamic
error is raised [err:XQDY0025]. If an attribute named xml:space has a
value other than preserve or default, a dynamic error MAY be raised
[err:XQDY0092].

d. children consist of all the element, text, comment, and processing
instruction nodes in the content sequence. Note that the parent
property of each of these nodes has been set to the newly constructed
element node.

e. base-uri is set to the following value:

i. If the constructed node has an attribute named xml:base, then
the value of this attribute, resolved if it is relative against the base
URI in the static context. The value of the xml:base attribute is
normalized as described in [XML Base].

ii. Otherwise, the value of the base URI in the static context.

Page 91 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

f. in-scope-namespaces are computed as described in 3.7.4 In-scope
Namespaces of a Constructed Element.

g. The nilled property is false.

h. The string-value property is equal to the concatenated contents of the
text-node descendants in document order.

i. The typed-value property is equal to the string-value property, as an
instance of xs:untypedAtomic.

j. If construction mode in the static context is strip, the type-name
property is xs:untyped. On the other hand, if construction mode is
preserve, the type-name property is xs:anyType.

k. The is-id and is-idrefs properties are set to false.

A computed element constructor might be used to make a modified copy of an
existing element. For example, if the variable $e is bound to an element with
numeric content, the following constructor might be used to create a new element
with the same name and attributes as $e and with numeric content equal to twice
the value of $e:

element {fn:node-name($e)}

 {$e/@*, 2 * fn:data($e)}

In this example, if $e is bound by the expression let $e := <length
units="inches">{5}</length>, then the result of the example expression is the
element <length units="inches">10</length>.

Note:

The static type of the expression fn:node-name($e) is xs:QName?, denoting
zero or one QName. Therefore, if the Static Typing Feature is in effect, the
above example raises a static type error, since the name expression in a
computed element constructor is required to return exactly one string or
QName. In order to avoid the static type error, the name expression fn:node-
name($e) could be rewritten as fn:exactly-one(fn:node-name($e)). If the
Static Typing Feature is not in effect, the example can be successfully
evaluated as written, provided that $e is bound to exactly one element node
with numeric content.

One important purpose of computed constructors is to allow the name of a node to
be computed. We will illustrate this feature by an expression that translates the
name of an element from one language to another. Suppose that the variable
$dict is bound to a dictionary element containing a sequence of entry elements,
each of which encodes translations for a specific word. Here is an example entry
that encodes the German and Italian variants of the word "address":

Page 92 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

<entry word="address">

 <variant xml:lang="de">Adresse</variant>

 <variant xml:lang="it">indirizzo</variant>

</entry>

Suppose further that the variable $e is bound to the following element:

<address>123 Roosevelt Ave. Flushing, NY 11368</address>

Then the following expression generates a new element in which the name of $e
has been translated into Italian and the content of $e (including its attributes, if
any) has been preserved. The first enclosed expression after the element keyword
generates the name of the element, and the second enclosed expression
generates the content and attributes:

 element

 {$dict/entry[@word=name($e)]/variant[@xml:lang="it"]}

 {$e/@*, $e/node()}

The result of this expression is as follows:

<indirizzo>123 Roosevelt Ave. Flushing, NY 11368</indirizzo>

Note:

As in the previous example, if the Static Typing Feature is in effect, the
enclosed expression that computes the element name in the above computed
element constructor must be wrapped in a call to the fn:exactly-one function
in order to avoid a static type error.

Additional examples of computed element constructors can be found in I.4
Recursive Transformations.

3.7.3.2 Computed Attribute Constructors

A computed attribute constructor creates a new attribute node, with its own node
identity.

If the keyword attribute is followed by a QName, that QName is expanded using
the statically known namespaces, and the resulting expanded QName (including
its prefix) is used as the node-name property of the constructed attribute node. If

[113] CompAttrConstructor ::= "attribute" (QName | ("{" Expr "}")) "{"
Expr? "}"

Page 93 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

expansion of the QName is not successful, a static error is raised [err:XPST0081].

If the keyword attribute is followed by a name expression, the name expression
is processed as follows:

1. Atomization is applied to the result of the name expression. If the result of
atomization is not a single atomic value of type xs:QName, xs:string, or
xs:untypedAtomic, a type error is raised [err:XPTY0004].

2. If the atomized value of the name expression is of type xs:QName, that
expanded QName (including its prefix) is used as the node-name property of
the constructed attribute node.

3. If the atomized value of the name expression is of type xs:string or
xs:untypedAtomic, that value is converted to an expanded QName. If the
string value contains a namespace prefix, that prefix is resolved to a
namespace URI using the statically known namespaces. If the string value
contains no namespace prefix, it is treated as a local name in no
namespace. The resulting expanded QName (including its prefix) is used as
the node-name property of the constructed attribute. If conversion of the
atomized name expression to an expanded QName is not successful, a
dynamic error is raised [err:XQDY0074].

The node-name property of the constructed attribute (an expanded QName) is
checked as follows: If its URI part is http://www.w3.org/2000/xmlns/
(corresponding to namespace prefix xmlns) or if it is in no namespace and its local
name is xmlns, a dynamic error [err:XQDY0044] is raised.

The content expression of a computed attribute constructor is processed as
follows:

1. Atomization is applied to the result of the content expression, converting it to
a sequence of atomic values. (If the content expression is absent, the result
of this step is an empty sequence.)

2. If the result of atomization is an empty sequence, the value of the attribute is
the zero-length string. Otherwise, each atomic value in the atomized
sequence is cast into a string.

3. The individual strings resulting from the previous step are merged into a
single string by concatenating them with a single space character between
each pair. The resulting string becomes the string-value property of the
new attribute node. The type annotation (type-name property) of the new
attribute node is xs:untypedAtomic. The typed-value property of the attribute
node is the same as its string-value, as an instance of xs:untypedAtomic.

4. The parent property of the attribute node is set to empty.

5. If the attribute name is xml:id, then xml:id processing is performed as
defined in [XML ID]. This ensures that the attribute node has the type xs:ID

Page 94 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

and that its value is properly normalized. If an error is encountered during
xml:id processing, an implementation MAY raise a dynamic error
[err:XQDY0091].

6. If the attribute name is xml:id, the is-id property of the resulting attribute
node is set to true; otherwise the is-id property is set to false. The is-
idrefs property of the attribute node is unconditionally set to false.

7. If the attribute name is xml:space and the attribute value is other than
preserve or default, a dynamic error MAY be raised [err:XQDY0092].

� Example:

attribute size {4 + 3}

The string value of the size attribute is "7" and its type is xs:untypedAtomic.

� Example:

attribute

 { if ($sex = "M") then "husband" else "wife" }

 { <a>Hello, 1 to 3, Goodbye }

The name of the constructed attribute is either husband or wife. Its string
value is "Hello 1 2 3 Goodbye".

3.7.3.3 Document Node Constructors

All document node constructors are computed constructors. The result of a
document node constructor is a new document node, with its own node identity.

A document node constructor is useful when the result of a query is to be a
document in its own right. The following example illustrates a query that returns an
XML document containing a root element named author-list:

document

 {

 <author-list>

 {fn:doc("bib.xml")/bib/book/author}

 </author-list>

 }

The content expression of a document node constructor is processed in exactly
the same way as an enclosed expression in the content of a direct element
constructor, as described in Step 1e of 3.7.1.3 Content. The result of processing
the content expression is a sequence of nodes called the content sequence.
Processing of the document node constructor then proceeds as follows:

[110] CompDocConstructor ::= "document" "{" Expr "}"

Page 95 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

1. Adjacent text nodes in the content sequence are merged into a single text
node by concatenating their contents, with no intervening blanks. After
concatenation, any text node whose content is a zero-length string is deleted
from the content sequence.

2. If the content sequence contains a document node, the document node is
replaced in the content sequence by its children.

3. If the content sequence contains an attribute node, a type error is raised
[err:XPTY0004].

4. The properties of the newly constructed document node are determined as
follows:

a. base-uri is taken from base URI in the static context. If no base URI is
defined in the static context, the base-uri property is empty.

b. children consist of all the element, text, comment, and processing
instruction nodes in the content sequence. Note that the parent
property of each of these nodes has been set to the newly constructed
document node.

c. The unparsed-entities and document-uri properties are empty.

d. The string-value property is equal to the concatenated contents of the
text-node descendants in document order.

e. The typed-value property is equal to the string-value property, as an
instance of xs:untypedAtomic.

No validation is performed on the constructed document node. The [XML 1.0] rules
that govern the structure of an XML document (for example, the document node
must have exactly one child that is an element node) are not enforced by the
XQuery document node constructor.

3.7.3.4 Text Node Constructors

All text node constructors are computed constructors. The result of a text node
constructor is a new text node, with its own node identity.

The content expression of a text node constructor is processed as follows:

1. Atomization is applied to the value of the content expression, converting it to
a sequence of atomic values.

2. If the result of atomization is an empty sequence, no text node is
constructed. Otherwise, each atomic value in the atomized sequence is cast
into a string.

3. The individual strings resulting from the previous step are merged into a
single string by concatenating them with a single space character between

[114] CompTextConstructor ::= "text" "{" Expr "}"

Page 96 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

each pair. The resulting string becomes the content property of the
constructed text node.

The parent property of the constructed text node is set to empty.

Note:

It is possible for a text node constructor to construct a text node containing a
zero-length string. However, if used in the content of a constructed element or
document node, such a text node will be deleted or merged with another text
node.

The following example illustrates a text node constructor:

text {"Hello"}

3.7.3.5 Computed Processing Instruction Constructors

A computed processing instruction constructor (CompPIConstructor) constructs a
new processing instruction node with its own node identity.

If the keyword processing-instruction is followed by an NCName, that NCName
is used as the target property of the constructed node. If the keyword
processing-instruction is followed by a name expression, the name expression
is processed as follows:

1. Atomization is applied to the value of the name expression. If the result of
atomization is not a single atomic value of type xs:NCName, xs:string, or
xs:untypedAtomic, a type error is raised [err:XPTY0004].

2. If the atomized value of the name expression is of type xs:string or
xs:untypedAtomic, that value is cast to the type xs:NCName. If the value
cannot be cast to xs:NCName, a dynamic error is raised [err:XQDY0041].

3. The resulting NCName is then used as the target property of the newly
constructed processing instruction node. However, a dynamic error is raised
if the NCName is equal to "XML" (in any combination of upper and lower case)
[err:XQDY0064].

The content expression of a computed processing instruction constructor is
processed as follows:

1. Atomization is applied to the value of the content expression, converting it to

[116] CompPIConstructor ::= "processing-instruction" (NCName | ("{"
Expr "}")) "{" Expr? "}"

Page 97 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

a sequence of atomic values. (If the content expression is absent, the result
of this step is an empty sequence.)

2. If the result of atomization is an empty sequence, it is replaced by a zero-
length string. Otherwise, each atomic value in the atomized sequence is cast
into a string. If any of the resulting strings contains the string "?>", a dynamic
error [err:XQDY0026] is raised.

3. The individual strings resulting from the previous step are merged into a
single string by concatenating them with a single space character between
each pair. Leading whitespace is removed from the resulting string. The
resulting string then becomes the content property of the constructed
processing instruction node.

The remaining properties of the new processing instruction node are determined
as follows:

1. The parent property is empty.

2. The base-uri property is empty.

The following example illustrates a computed processing instruction constructor:

let $target := "audio-output",

 $content := "beep"

return processing-instruction {$target} {$content}

The processing instruction node constructed by this example might be serialized
as follows:

<?audio-output beep?>

3.7.3.6 Computed Comment Constructors

A computed comment constructor (CompCommentConstructor) constructs a new
comment node with its own node identity. The content expression of a computed
comment constructor is processed as follows:

1. Atomization is applied to the value of the content expression, converting it to
a sequence of atomic values.

2. If the result of atomization is an empty sequence, it is replaced by a zero-
length string. Otherwise, each atomic value in the atomized sequence is cast
into a string.

3. The individual strings resulting from the previous step are merged into a

[115] CompCommentConstructor ::= "comment" "{" Expr "}"

Page 98 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

single string by concatenating them with a single space character between
each pair. The resulting string becomes the content property of the
constructed comment node.

4. It is a dynamic error [err:XQDY0072] if the result of the content expression of
a computed comment constructor contains two adjacent hyphens or ends
with a hyphen.

The parent property of the constructed comment node is set to empty.

The following example illustrates a computed comment constructor:

let $homebase := "Houston"

return comment {fn:concat($homebase, ", we have a problem.")}

The comment node constructed by this example might be serialized as follows:

<!--Houston, we have a problem.-->

3.7.4 In-scope Namespaces of a Constructed Element

An element node constructed by a direct or computed element constructor has an
in-scope namespaces property that consists of a set of namespace bindings. The
in-scope namespaces of an element node may affect the way the node is
serialized (see 2.2.4 Serialization), and may also affect the behavior of certain
functions that operate on nodes, such as fn:name. Note the difference between in-
scope namespaces, which is a dynamic property of an element node, and
statically known namespaces, which is a static property of an expression. Also
note that one of the namespace bindings in the in-scope namespaces may have
no prefix (denoting the default namespace for the given element). The in-scope
namespaces of a constructed element node consist of the following namespace
bindings:

� A namespace binding is created for each namespace declared in the current
element constructor by a namespace declaration attribute.

� A namespace binding is created for each namespace that is declared in a
namespace declaration attribute of an enclosing direct element constructor
and not overridden by the current element constructor or an intermediate
constructor.

� A namespace binding is always created to bind the prefix xml to the
namespace URI http://www.w3.org/XML/1998/namespace.

� For each namespace used in the name of the constructed element or in the
names of its attributes, a namespace binding must exist. If a namespace
binding does not already exist for one of these namespaces, a new
namespace binding is created for it. If the name of the node includes a

Page 99 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

prefix, that prefix is used in the namespace binding; if the name has no
prefix, then a binding is created for the empty prefix. If this would result in a
conflict, because it would require two different bindings of the same prefix,
then the prefix used in the node name is changed to an arbitrary
implementation-dependent prefix that does not cause such a conflict, and a
namespace binding is created for this new prefix.

Note:

Copy-namespaces mode does not affect the namespace bindings of a newly
constructed element node. It applies only to existing nodes that are copied by
a constructor expression.

The following query serves as an example:

declare namespace p="http://example.com/ns/p";

declare namespace q="http://example.com/ns/q";

declare namespace f="http://example.com/ns/f";

<p:a q:b="{f:func(2)}" xmlns:r="http://example.com/ns/r"/>

The in-scope namespaces of the resulting p:a element consists of the following
namespace bindings:

� p = "http://example.com/ns/p"

� q = "http://example.com/ns/q"

� r = "http://example.com/ns/r"

� xml = "http://www.w3.org/XML/1998/namespace"

The namespace bindings for p and q are added to the result element because their
respective namespaces are used in the names of the element and its attributes.
The namespace binding r="http://example.com/ns/r" is added to the in-scope
namespaces of the constructed element because it is defined by a namespace
declaration attribute, even though it is not used in a name.

No namespace binding corresponding to f="http://example.com/ns/f" is
created, because the namespace prefix f appears only in the query prolog and is
not used in an element or attribute name of the constructed node. This namespace
binding does not appear in the query result, even though it is present in the
statically known namespaces and is available for use during processing of the
query.

Note that the following constructed element, if nested within a validate
expression, cannot be validated:

Page 100 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

<p xsi:type="xs:integer">3</p>

The constructed element will have namespace bindings for the prefixes xsi
(because it is used in a name) and xml (because it is defined for every constructed
element node). During validation of the constructed element, the validator will be
unable to interpret the namespace prefix xs because it is has no namespace
binding. Validation of this constructed element could be made possible by
providing a namespace declaration attribute, as in the following example:

<p xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xsi:type="xs:integer">3</p>

3.8 FLWOR Expressions

XQuery provides a feature called a FLWOR expression that supports iteration and
binding of variables to intermediate results. This kind of expression is often useful
for computing joins between two or more documents and for restructuring data.
The name FLWOR, pronounced "flower", is suggested by the keywords for, let,
where, order by, and return.

The for and let clauses in a FLWOR expression generate an ordered sequence
of tuples of bound variables, called the tuple stream. The optional where clause
serves to filter the tuple stream, retaining some tuples and discarding others. The
optional order by clause can be used to reorder the tuple stream. The return
clause constructs the result of the FLWOR expression. The return clause is

[33] FLWORExpr ::= (ForClause | LetClause)+ WhereClause?
OrderByClause? "return" ExprSingle

[34] ForClause ::= "for" "$" VarName TypeDeclaration?
PositionalVar? "in" ExprSingle ("," "$"

VarName TypeDeclaration? PositionalVar? "in"

ExprSingle)*

[36] LetClause ::= "let" "$" VarName TypeDeclaration? ":="
ExprSingle ("," "$" VarName TypeDeclaration?

":=" ExprSingle)*

[118] TypeDeclaration ::= "as" SequenceType

[35] PositionalVar ::= "at" "$" VarName

[37] WhereClause ::= "where" ExprSingle

[38] OrderByClause ::= (("order" "by") | ("stable" "order" "by"))
OrderSpecList

[39] OrderSpecList ::= OrderSpec ("," OrderSpec)*

[40] OrderSpec ::= ExprSingle OrderModifier

[41] OrderModifier ::= ("ascending" | "descending")?
("empty" ("greatest" | "least"))?

("collation" URILiteral)?

Page 101 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

evaluated once for every tuple in the tuple stream, after filtering by the where
clause, using the variable bindings in the respective tuples. The result of the
FLWOR expression is an ordered sequence containing the results of these
evaluations, concatenated as if by the comma operator.

The following example of a FLWOR expression includes all of the possible
clauses. The for clause iterates over all the departments in an input document,
binding the variable $d to each department number in turn. For each binding of $d,
the let clause binds variable $e to all the employees in the given department,
selected from another input document. The result of the for and let clauses is a
tuple stream in which each tuple contains a pair of bindings for $d and $e ($d is
bound to a department number and $e is bound to a set of employees in that
department). The where clause filters the tuple stream by keeping only those
binding-pairs that represent departments having at least ten employees. The order
by clause orders the surviving tuples in descending order by the average salary of
the employees in the department. The return clause constructs a new big-dept
element for each surviving tuple, containing the department number, headcount,
and average salary.

for $d in fn:doc("depts.xml")/depts/deptno

let $e := fn:doc("emps.xml")/emps/emp[deptno = $d]

where fn:count($e) >= 10

order by fn:avg($e/salary) descending

return

 <big-dept>

 {

 $d,

 <headcount>{fn:count($e)}</headcount>,

 <avgsal>{fn:avg($e/salary)}</avgsal>

 }

 </big-dept>

The clauses in a FLWOR expression are described in more detail below.

3.8.1 For and Let Clauses

The purpose of the for and let clauses in a FLWOR expression is to produce a
tuple stream in which each tuple consists of one or more bound variables.

The simplest example of a for clause contains one variable and an associated
expression. [Definition: The value of the expression associated with a variable in a
for clause is called the binding sequence for that variable.] The for clause
iterates over the items in the binding sequence, binding the variable to each item
in turn. If ordering mode is ordered, the resulting sequence of variable bindings is
ordered according to the order of values in the binding sequence; otherwise the
ordering of the variable bindings is implementation-dependent.

Page 102 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

A for clause may also contain multiple variables, each with an associated
expression whose value is the binding sequence for that variable. In this case, the
for clause iterates each variable over its binding sequence. The resulting tuple
stream contains one tuple for each combination of values in the respective binding
sequences. If ordering mode is ordered, the order of the tuple stream is
determined primarily by the order of the binding sequence of the leftmost variable,
and secondarily by the binding sequences of the other variables, working from left
to right. Otherwise, the ordering of the variable bindings is implementation-
dependent.

A let clause may also contain one or more variables, each with an associated
expression. Unlike a for clause, however, a let clause binds each variable to the
result of its associated expression, without iteration. The variable bindings
generated by let clauses are added to the binding tuples generated by the for
clauses. If there are no for clauses, the let clauses generate one tuple containing
all the variable bindings.

Although for and let clauses both bind variables, the manner in which variables
are bound is quite different, as illustrated by the following examples. The first
example uses a let clause:

let $s := (<one/>, <two/>, <three/>)

return <out>{$s}</out>

The variable $s is bound to the result of the expression (<one/>, <two/>,
<three/>). Since there are no for clauses, the let clause generates one tuple
that contains the binding of $s. The return clause is invoked for this tuple, creating
the following output:

<out>

 <one/>

 <two/>

 <three/>

</out>

The next example is a similar query that contains a for clause instead of a let
clause:

for $s in (<one/>, <two/>, <three/>)

return <out>{$s}</out>

In this example, the variable $s iterates over the given expression. If ordering
mode is ordered, $s is first bound to <one/>, then to <two/>, and finally to
<three/>. One tuple is generated for each of these bindings, and the return
clause is invoked for each tuple, creating the following output:

Page 103 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

<out>

 <one/>

</out>

<out>

 <two/>

</out>

<out>

 <three/>

</out>

The following example illustrates how binding tuples are generated by a for
clause that contains multiple variables when ordering mode is ordered.

for $i in (1, 2), $j in (3, 4)

The tuple stream generated by the above for clause is as follows:

($i = 1, $j = 3)

($i = 1, $j = 4)

($i = 2, $j = 3)

($i = 2, $j = 4)

If ordering mode were unordered, the for clause in the above example would
generate the same tuple stream but the order of the tuples would be
implementation-dependent.

The scope of a variable bound in a for or let clause comprises all subexpressions
of the containing FLWOR expression that appear after the variable binding. The
scope does not include the expression to which the variable is bound. The
following example illustrates how bindings in for and let clauses may reference
variables that were bound in earlier clauses, or in earlier bindings in the same
clause of the FLWOR expression:

for $x in $w, $a in f($x)

let $y := g($a)

for $z in p($x, $y)

return q($x, $y, $z)

The for and let clauses of a given FLWOR expression may bind the same
variable name more than once. In this case, each new binding occludes the
previous one, which becomes inaccessible in the remainder of the FLWOR
expression.

Each variable bound in a for or let clause may have an optional type
declaration, which is a type declared using the syntax in 2.5.3 SequenceType

Page 104 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

Syntax. If the type of a value bound to the variable does not match the declared
type according to the rules for SequenceType matching, a type error is raised
[err:XPTY0004]. For example, the following expression raises a type error
because the variable $salary has a type declaration that is not satisfied by the
value that is bound to the variable:

let $salary as xs:decimal := "cat"

return $salary * 2

Each variable bound in a for clause may have an associated positional variable
that is bound at the same time. The name of the positional variable is preceded by
the keyword at. The positional variable always has an implied type of xs:integer.
As a variable iterates over the items in its binding sequence, its positional variable
iterates over the integers that represent the ordinal positions of those items in the
binding sequence, starting with 1. The expanded QName of a positional variable
must be distinct from the expanded QName of the variable with which it is
associated [err:XQST0089].

Positional variables are illustrated by the following for clause:

for $car at $i in ("Ford", "Chevy"),

 $pet at $j in ("Cat", "Dog")

If ordering mode is ordered, the tuple stream generated by the above for clause is
as follows:

($i = 1, $car = "Ford", $j = 1, $pet = "Cat")

($i = 1, $car = "Ford", $j = 2, $pet = "Dog")

($i = 2, $car = "Chevy", $j = 1, $pet = "Cat")

($i = 2, $car = "Chevy", $j = 2, $pet = "Dog")

If ordering mode is unordered, the order of the tuple stream is implementation-
dependent. In addition, if a for clause contains subexpressions that are affected
by ordering mode, the association of positional variables with items returned by
these subexpressions is implementation-dependent if ordering mode is unordered.

3.8.2 Where Clause

The optional where clause serves as a filter for the tuples of variable bindings
generated by the for and let clauses. The expression in the where clause, called
the where-expression, is evaluated once for each of these tuples. If the effective
boolean value of the where-expression is true, the tuple is retained and its
variable bindings are used in an execution of the return clause. If the effective
boolean value of the where-expression is false, the tuple is discarded. The

Page 105 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

effective boolean value of an expression is defined in 2.4.3 Effective Boolean
Value.

The following expression illustrates how a where clause might be applied to a
positional variable in order to perform sampling on an input sequence. This
expression approximates the average value in a sequence by sampling one value
out of each one hundred input values.

fn:avg(for $x at $i in $inputvalues

 where $i mod 100 = 0

 return $x)

3.8.3 Order By and Return Clauses

The return clause of a FLWOR expression is evaluated once for each tuple in the
tuple stream, and the results of these evaluations are concatenated, as if by the
comma operator, to form the result of the FLWOR expression.

If no order by clause is present, the order of the tuple stream is determined by the
for and let clauses and by ordering mode. If an order by clause is present, it
reorders the tuples in the tuple stream into a new, value-based order. In either
case, the resulting order determines the order in which the return clause is
evaluated, once for each tuple, using the variable bindings in the respective tuples.
Note that ordering mode has no effect on a FLWOR expression if an order by
clause is present, since order by takes precedence over ordering mode.

An order by clause contains one or more ordering specifications, called
orderspecs, as shown in the grammar above. For each tuple in the tuple stream,
after filtering by the where clause, the orderspecs are evaluated, using the variable
bindings in that tuple. The relative order of two tuples is determined by comparing
the values of their orderspecs, working from left to right until a pair of unequal
values is encountered. If an orderspec specifies a collation, that collation is used in
comparing values of type xs:string, xs:anyURI, or types derived from them
(otherwise, the default collation is used). If an orderspec specifies a collation by a
relative URI, that relative URI is resolved to an absolute URI using the base URI in
the static context. If an orderspec specifies a collation that is not found in statically
known collations, an error is raised [err:XQST0076].

The process of evaluating and comparing the orderspecs is based on the following
rules:

� Atomization is applied to the result of the expression in each orderspec. If
the result of atomization is neither a single atomic value nor an empty
sequence, a type error is raised [err:XPTY0004].

� If the value of an orderspec has the dynamic type xs:untypedAtomic (such

Page 106 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

as character data in a schemaless document), it is cast to the type
xs:string.

Note:

Consistently treating untyped values as strings enables the sorting
process to begin without complete knowledge of the types of all the
values to be sorted.

� All the non-empty orderspec values must be convertible to a common type
by subtype substitution and/or type promotion. The ordering is performed in
the least common type that has a gt operator. If two or more non-empty
orderspec values are not convertible to a common type that has a gt
operator, a type error is raised [err:XPTY0004].

� Example: The orderspec values include a value of type hatsize, which
is derived from xs:integer, and a value of type shoesize, which is
derived from xs:decimal. The least common type reachable by subtype
substitution and type promotion is xs:decimal.

� Example: The orderspec values include a value of type xs:string and
a value of type xs:anyURI. The least common type reachable by
subtype substitution and type promotion is xs:string.

When two orderspec values are compared to determine their relative position in
the ordering sequence, the greater-than relationship is defined as follows:

� When the orderspec specifies empty least, a value W is considered to be
greater-than a value V if one of the following is true:

� V is an empty sequence and W is not an empty sequence.

� V is NaN, and W is neither NaN nor an empty sequence.

� No collation is specified, and W gt V is true.

� A specific collation C is specified, and fn:compare(V, W, C) is less
than zero.

� When the orderspec specifies empty greatest, a value W is considered to
be greater-than a value V if one of the following is true:

� W is an empty sequence and V is not an empty sequence.

� W is NaN, and V is neither NaN nor an empty sequence.

� No collation is specified, and W gt V is true.

� A specific collation C is specified, and fn:compare(V, W, C) is less
than zero.

� When the orderspec specifies neither empty least nor empty greatest, the
default order for empty sequences in the static context determines whether
the rules for empty least or empty greatest are used.

If T1 and T2 are two tuples in the tuple stream, and V1 and V2 are the first pair of
values encountered when evaluating their orderspecs from left to right for which

Page 107 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

one value is greater-than the other (as defined above), then:

1. If V1 is greater-than V2: If the orderspec specifies descending, then T1
precedes T2 in the tuple stream; otherwise, T2 precedes T1 in the tuple
stream.

2. If V2 is greater-than V1: If the orderspec specifies descending, then T2
precedes T1 in the tuple stream; otherwise, T1 precedes T2 in the tuple
stream.

If neither V1 nor V2 is greater-than the other for any pair of orderspecs for tuples
T1 and T2, the following rules apply.

1. If stable is specified, the original order of T1 and T2 is preserved in the tuple
stream.

2. If stable is not specified, the order of T1 and T2 in the tuple stream is
implementation-dependent.

Note:

If two orderspecs return the special floating-point values positive and negative
zero, neither of these values is greater-than the other, since +0.0 gt -0.0
and -0.0 gt +0.0 are both false.

An order by clause makes it easy to sort the result of a FLWOR expression, even
if the sort key is not included in the result of the expression. For example, the
following expression returns employee names in descending order by salary,
without returning the actual salaries:

for $e in $employees

order by $e/salary descending

return $e/name

Note:

Since the order by clause in a FLWOR expression is the only facility provided
by XQuery for specifying a value ordering, a FLWOR expression must be
used in some queries where iteration would not otherwise be necessary. For
example, a list of books with price less than 100 might be obtained by a
simple path expression such as $books/book[price < 100]. But if these
books are to be returned in alphabetic order by title, the query must be
expressed as follows:

for $b in $books/book[price < 100]

order by $b/title

return $b

Page 108 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

The following example illustrates an order by clause that uses several options. It
causes a collection of books to be sorted in primary order by title, and in
secondary descending order by price. A specific collation is specified for the title
ordering, and in the ordering by price, books with no price are specified to occur
last (as though they have the least possible price). Whenever two books with the
same title and price occur, the keyword stable indicates that their input order is
preserved.

for $b in $books/book

stable order by $b/title

 collation "http://www.example.org/collations/fr-ca",

 $b/price descending empty least

return $b

Note:

Parentheses are helpful in return clauses that contain comma operators,
since FLWOR expressions have a higher precedence than the comma
operator. For instance, the following query raises an error because after the
comma, $j is no longer within the FLWOR expression, and is an undefined
variable:

let $i := 5,

 $j := 20 * $i

return $i, $j

Parentheses can be used to bring $j into the return clause of the FLWOR
expression, as the programmer probably intended:

let $i := 5,

 $j := 20 * $i

return ($i, $j)

3.8.4 Example

The following example illustrates how FLWOR expressions can be nested, and
how ordering can be specified at multiple levels of an element hierarchy. The
example query inverts a document hierarchy to transform a bibliography into an
author list. The input (bound to the variable $bib) is a bib element containing a list
of books, each of which in turn contains a list of authors. The example is based on
the following input:

<bib>

 <book>

 <title>TCP/IP Illustrated</title>

Page 109 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

 <author>Stevens</author>

 <publisher>Addison-Wesley</publisher>

 </book>

 <book>

 <title>Advanced Programming

 in the Unix Environment</title>

 <author>Stevens</author>

 <publisher>Addison-Wesley</publisher>

 </book>

 <book>

 <title>Data on the Web</title>

 <author>Abiteboul</author>

 <author>Buneman</author>

 <author>Suciu</author>

 </book>

</bib>

The following query transforms the input document into a list in which each
author's name appears only once, followed by a list of titles of books written by
that author. The fn:distinct-values function is used to eliminate duplicates (by
value) from a list of author nodes. The author list, and the lists of books published
by each author, are returned in alphabetic order using the default collation.

<authlist>

 {

 for $a in fn:distinct-values($bib/book/author)

 order by $a

 return

 <author>

 <name> {$a} </name>

 <books>

 {

 for $b in $bib/book[author = $a]

 order by $b/title

 return $b/title

 }

 </books>

 </author>

 }

</authlist>

The result of the above expression is as follows:

<authlist>

 <author>

 <name>Abiteboul</name>

 <books>

 <title>Data on the Web</title>

 </books>

 </author>

 <author>

Page 110 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

 <name>Buneman</name>

 <books>

 <title>Data on the Web</title>

 </books>

 </author>

 <author>

 <name>Stevens</name>

 <books>

 <title>Advanced Programming

 in the Unix Environment</title>

 <title>TCP/IP Illustrated</title>

 </books>

 </author>

 <author>

 <name>Suciu</name>

 <books>

 <title>Data on the Web</title>

 </books>

 </author>

</authlist>

3.9 Ordered and Unordered Expressions

The purpose of ordered and unordered expressions is to set the ordering mode in
the static context to ordered or unordered for a certain region in a query. The
specified ordering mode applies to the expression nested inside the curly braces.
For expressions where the ordering of the result is not significant, a performance
advantage may be realized by setting the ordering mode to unordered, thereby
granting the system flexibility to return the result in the order that it finds most
efficient.

Ordering mode affects the behavior of path expressions that include a "/" or "//"
operator or an axis step; union, intersect, and except expressions; the fn:id and
fn:idref functions; and FLWOR expressions that have no order by clause. If
ordering mode is ordered, node sequences returned by path expressions, union,
intersect, and except expressions, and the fn:id and fn:idref functions are in
document order; otherwise the order of these return sequences is implementation-
dependent. The effect of ordering mode on FLWOR expressions is described in
3.8 FLWOR Expressions. Ordering mode has no effect on duplicate elimination.

Note:

In a region of a query where ordering mode is unordered, the result of an
expression may be nondeterministic if the expression invokes certain
functions that are affected by the ordering of node sequences. These

[91] OrderedExpr ::= "ordered" "{" Expr "}"

[92] UnorderedExpr ::= "unordered" "{" Expr "}"

Page 111 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

functions include fn:position, fn:last, fn:index-of, fn:insert-before,
fn:remove, fn:reverse, and fn:subsequence. Also, within a path expression in
an unordered region, numeric predicates are nondeterministic. For example,
in an ordered region, the path expression (//a/b)[5] will return the fifth
qualifying b-element in document order. In an unordered region, the same
expression will return an implementation-dependent qualifying b-element.

Note:

The fn:id and fn:idref functions are described in [XQuery 1.0 and XPath
2.0 Functions and Operators] as returning their results in document order.
Since ordering mode is a feature of XQuery, relaxation of the ordering
requirement for function results when ordering mode is unordered is a feature
of XQuery rather than of the functions themselves.

The use of an unordered expression is illustrated by the following example, which
joins together two documents named parts.xml and suppliers.xml. The example
returns the part numbers of red parts, paired with the supplier numbers of
suppliers who supply these parts. If an unordered expression were not used, the
resulting list of (part number, supplier number) pairs would be required to have an
ordering that is controlled primarily by the document order of parts.xml and
secondarily by the document order of suppliers.xml. However, this might not be
the most efficient way to process the query if the ordering of the result is not
important. An XQuery implementation might be able to process the query more
efficiently by using an index to find the red parts, or by using suppliers.xml rather
than parts.xml to control the primary ordering of the result. The unordered
expression gives the query evaluator freedom to make these kinds of
optimizations.

unordered {

 for $p in fn:doc("parts.xml")/parts/part[color = "Red"],

 $s in fn:doc("suppliers.xml")/suppliers/supplier

 where $p/suppno = $s/suppno

 return

 <ps>

 { $p/partno, $s/suppno }

 </ps>

}

In addition to ordered and unordered expressions, XQuery provides a function
named fn:unordered that operates on any sequence of items and returns the
same sequence in a nondeterministic order. A call to the fn:unordered function
may be thought of as giving permission for the argument expression to be
materialized in whatever order the system finds most efficient. The fn:unordered
function relaxes ordering only for the sequence that is its immediate operand,
whereas an unordered expression sets the ordering mode for its operand

Page 112 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

expression and all nested expressions.

3.10 Conditional Expressions

XQuery supports a conditional expression based on the keywords if, then, and
else.

The expression following the if keyword is called the test expression, and the
expressions following the then and else keywords are called the then-expression
and else-expression, respectively.

The first step in processing a conditional expression is to find the effective boolean
value of the test expression, as defined in 2.4.3 Effective Boolean Value.

The value of a conditional expression is defined as follows: If the effective boolean
value of the test expression is true, the value of the then-expression is returned. If
the effective boolean value of the test expression is false, the value of the else-
expression is returned.

Conditional expressions have a special rule for propagating dynamic errors. If the
effective value of the test expression is true, the conditional expression ignores
(does not raise) any dynamic errors encountered in the else-expression. In this
case, since the else-expression can have no observable effect, it need not be
evaluated. Similarly, if the effective value of the test expression is false, the
conditional expression ignores any dynamic errors encountered in the then-
expression, and the then-expression need not be evaluated.

Here are some examples of conditional expressions:

� In this example, the test expression is a comparison expression:

if ($widget1/unit-cost < $widget2/unit-cost)

 then $widget1

 else $widget2

� In this example, the test expression tests for the existence of an attribute
named discounted, independently of its value:

if ($part/@discounted)

 then $part/wholesale

 else $part/retail

3.11 Quantified Expressions

Quantified expressions support existential and universal quantification. The value

[45] IfExpr ::= "if" "(" Expr ")" "then" ExprSingle "else" ExprSingle

Page 113 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

of a quantified expression is always true or false.

A quantified expression begins with a quantifier, which is the keyword some or
every, followed by one or more in-clauses that are used to bind variables, followed
by the keyword satisfies and a test expression. Each in-clause associates a
variable with an expression that returns a sequence of items, called the binding
sequence for that variable. The in-clauses generate tuples of variable bindings,
including a tuple for each combination of items in the binding sequences of the
respective variables. Conceptually, the test expression is evaluated for each tuple
of variable bindings. Results depend on the effective boolean value of the test
expressions, as defined in 2.4.3 Effective Boolean Value. The value of the
quantified expression is defined by the following rules:

1. If the quantifier is some, the quantified expression is true if at least one
evaluation of the test expression has the effective boolean value true;
otherwise the quantified expression is false. This rule implies that, if the in-
clauses generate zero binding tuples, the value of the quantified expression
is false.

2. If the quantifier is every, the quantified expression is true if every evaluation
of the test expression has the effective boolean value true; otherwise the
quantified expression is false. This rule implies that, if the in-clauses
generate zero binding tuples, the value of the quantified expression is true.

The scope of a variable bound in a quantified expression comprises all
subexpressions of the quantified expression that appear after the variable binding.
The scope does not include the expression to which the variable is bound.

Each variable bound in an in-clause of a quantified expression may have an
optional type declaration. If the type of a value bound to the variable does not
match the declared type according to the rules for SequenceType matching, a type
error is raised [err:XPTY0004].

The order in which test expressions are evaluated for the various binding tuples is
implementation-dependent. If the quantifier is some, an implementation may return
true as soon as it finds one binding tuple for which the test expression has an
effective boolean value of true, and it may raise a dynamic error as soon as it
finds one binding tuple for which the test expression raises an error. Similarly, if
the quantifier is every, an implementation may return false as soon as it finds one
binding tuple for which the test expression has an effective boolean value of false,
and it may raise a dynamic error as soon as it finds one binding tuple for which the

[42] QuantifiedExpr ::= ("some" | "every") "$" VarName
TypeDeclaration? "in" ExprSingle ("," "$"

VarName TypeDeclaration? "in" ExprSingle)*

"satisfies" ExprSingle

[118] TypeDeclaration ::= "as" SequenceType

Page 114 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

test expression raises an error. As a result of these rules, the value of a quantified
expression is not deterministic in the presence of errors, as illustrated in the
examples below.

Here are some examples of quantified expressions:

� This expression is true if every part element has a discounted attribute
(regardless of the values of these attributes):

every $part in /parts/part satisfies $part/@discounted

� This expression is true if at least one employee element satisfies the given
comparison expression:

some $emp in /emps/employee satisfies

 ($emp/bonus > 0.25 * $emp/salary)

� In the following examples, each quantified expression evaluates its test
expression over nine tuples of variable bindings, formed from the Cartesian
product of the sequences (1, 2, 3) and (2, 3, 4). The expression
beginning with some evaluates to true, and the expression beginning with
every evaluates to false.

some $x in (1, 2, 3), $y in (2, 3, 4)

 satisfies $x + $y = 4

every $x in (1, 2, 3), $y in (2, 3, 4)

 satisfies $x + $y = 4

� This quantified expression may either return true or raise a type error, since
its test expression returns true for one variable binding and raises a type
error for another:

some $x in (1, 2, "cat") satisfies $x * 2 = 4

� This quantified expression may either return false or raise a type error,
since its test expression returns false for one variable binding and raises a
type error for another:

every $x in (1, 2, "cat") satisfies $x * 2 = 4

� This quantified expression contains a type declaration that is not satisfied by
every item in the test expression. If the Static Typing Feature is
implemented, this expression raises a type error during the static analysis
phase. Otherwise, the expression may either return true or raise a type error
during the dynamic evaluation phase.

some $x as xs:integer in (1, 2, "cat") satisfies $x * 2 = 4

3.12 Expressions on SequenceTypes

Page 115 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

In addition to their use in function parameters and results, sequence types are
used in instance of, typeswitch, cast, castable, and treat expressions.

3.12.1 Instance Of

The boolean operator instance of returns true if the value of its first operand
matches the SequenceType in its second operand, according to the rules for
SequenceType matching; otherwise it returns false. For example:

� 5 instance of xs:integer

This example returns true because the given value is an instance of the
given type.

� 5 instance of xs:decimal

This example returns true because the given value is an integer literal, and
xs:integer is derived by restriction from xs:decimal.

� <a>{5} instance of xs:integer

This example returns false because the given value is an element rather
than an integer.

� (5, 6) instance of xs:integer+

This example returns true because the given sequence contains two
integers, and is a valid instance of the specified type.

� . instance of element()

This example returns true if the context item is an element node or false if
the context item is defined but is not an element node. If the context item is
undefined, a dynamic error is raised [err:XPDY0002].

3.12.2 Typeswitch

The typeswitch expression chooses one of several expressions to evaluate
based on the dynamic type of an input value.

In a typeswitch expression, the typeswitch keyword is followed by an expression
enclosed in parentheses, called the operand expression. This is the expression
whose type is being tested. The remainder of the typeswitch expression consists
of one or more case clauses and a default clause.

[54] InstanceofExpr ::= TreatExpr ("instance" "of" SequenceType)?

[43] TypeswitchExpr ::= "typeswitch" "(" Expr ")" CaseClause+
"default" ("$" VarName)? "return" ExprSingle

[44] CaseClause ::= "case" ("$" VarName "as")? SequenceType
"return" ExprSingle

Page 116 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

Each case clause specifies a SequenceType followed by a return expression.
[Definition: The effective case in a typeswitch expression is the first case clause
such that the value of the operand expression matches the SequenceType in the
case clause, using the rules of SequenceType matching.] The value of the
typeswitch expression is the value of the return expression in the effective case.
If the value of the operand expression does not match any SequenceType named
in a case clause, the value of the typeswitch expression is the value of the return
expression in the default clause.

In a case or default clause, if the value to be returned depends on the value of the
operand expression, the clause must specify a variable name. Within the return
expression of the case or default clause, this variable name is bound to the value
of the operand expression. Inside a case clause, the static type of the variable is
the SequenceType named in the case clause. Inside a default clause, the static
type of the variable is the same as the static type of the operand expression. If the
value to be returned by a case or default clause does not depend on the value of
the operand expression, the clause need not specify a variable.

The scope of a variable binding in a case or default clause comprises that clause.
It is not an error for more than one case or default clause in the same typeswitch
expression to bind variables with the same name.

A special rule applies to propagation of dynamic errors by typeswitch
expressions. A typeswitch expression ignores (does not raise) any dynamic errors
encountered in case clauses other than the effective case. Dynamic errors
encountered in the default clause are raised only if there is no effective case.

The following example shows how a typeswitch expression might be used to
process an expression in a way that depends on its dynamic type.

typeswitch($customer/billing-address)

 case $a as element(*, USAddress) return $a/state

 case $a as element(*, CanadaAddress) return $a/province

 case $a as element(*, JapanAddress) return $a/prefecture

 default return "unknown"

3.12.3 Cast

Occasionally it is necessary to convert a value to a specific datatype. For this
purpose, XQuery provides a cast expression that creates a new value of a specific
type based on an existing value. A cast expression takes two operands: an input
expression and a target type. The type of the input expression is called the input

[57] CastExpr ::= UnaryExpr ("cast" "as" SingleType)?

[117] SingleType ::= AtomicType "?"?

Page 117 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

type. The target type must be an atomic type that is in the in-scope schema types
[err:XPST0051]. In addition, the target type cannot be xs:NOTATION or
xs:anyAtomicType [err:XPST0080]. The optional occurrence indicator "?" denotes
that an empty sequence is permitted. If the target type has no namespace prefix, it
is considered to be in the default element/type namespace. The semantics of the
cast expression are as follows:

1. Atomization is performed on the input expression.

2. If the result of atomization is a sequence of more than one atomic value, a
type error is raised [err:XPTY0004].

3. If the result of atomization is an empty sequence:

a. If ? is specified after the target type, the result of the cast expression is
an empty sequence.

b. If ? is not specified after the target type, a type error is raised
[err:XPTY0004].

4. If the result of atomization is a single atomic value, the result of the cast
expression depends on the input type and the target type. In general, the
cast expression attempts to create a new value of the target type based on
the input value. Only certain combinations of input type and target type are
supported. A summary of the rules are listed below— the normative
definition of these rules is given in [XQuery 1.0 and XPath 2.0 Functions and
Operators]. For the purpose of these rules, an implementation may
determine that one type is derived by restriction from another type either by
examining the in-scope schema definitions or by using an alternative,
implementation-dependent mechanism such as a data dictionary.

a. cast is supported for the combinations of input type and target type

listed in Section 17.1 Casting from primitive types to primitive typesFO.
For each of these combinations, both the input type and the target type
are primitive schema types. For example, a value of type xs:string
can be cast into the schema type xs:decimal. For each of these built-in
combinations, the semantics of casting are specified in [XQuery 1.0
and XPath 2.0 Functions and Operators].

If the target type of a cast expression is xs:QName, or is a type that is
derived from xs:QName or xs:NOTATION, and if the base type of the input
is not the same as the base type of the target type, then the input
expression must be a string literal [err:XPTY0004].

Note:

The reason for this rule is that construction of an instance of one of
these target types from a string requires knowledge about
namespace bindings. If the input expression is a non-literal string,
it might be derived from an input document whose namespace
bindings are different from the statically known namespaces.

b. cast is supported if the input type is a non-primitive atomic type that is

Page 118 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

derived by restriction from the target type. In this case, the input value
is mapped into the value space of the target type, unchanged except
for its type. For example, if shoesize is derived by restriction from
xs:integer, a value of type shoesize can be cast into the schema type
xs:integer.

c. cast is supported if the target type is a non-primitive atomic type and
the input type is xs:string or xs:untypedAtomic. The input value is first
converted to a value in the lexical space of the target type by applying
the whitespace normalization rules for the target type (as defined in
[XML Schema]); a dynamic error [err:FORG0001] is raised if the
resulting lexical value does not satisfy the pattern facet of the target
type. The lexical value is then converted to the value space of the
target type using the schema-defined rules for the target type; a
dynamic error [err:FORG0001] is raised if the resulting value does not
satisfy all the facets of the target type.

d. cast is supported if the target type is a non-primitive atomic type that is
derived by restriction from the input type. The input value must satisfy
all the facets of the target type (in the case of the pattern facet, this is
checked by generating a string representation of the input value, using
the rules for casting to xs:string). The resulting value is the same as
the input value, but with a different dynamic type.

e. If a primitive type P1 can be cast into a primitive type P2, then any type
derived by restriction from P1 can be cast into any type derived by
restriction from P2, provided that the facets of the target type are
satisfied. First the input value is cast to P1 using rule (b) above. Next,
the value of type P1 is cast to the type P2, using rule (a) above. Finally,
the value of type P2 is cast to the target type, using rule (d) above.

f. For any combination of input type and target type that is not in the
above list, a cast expression raises a type error [err:XPTY0004].

If casting from the input type to the target type is supported but nevertheless it is
not possible to cast the input value into the value space of the target type, a
dynamic error is raised. [err:FORG0001] This includes the case when any facet of
the target type is not satisfied. For example, the expression "2003-02-31" cast as
xs:date would raise a dynamic error.

3.12.4 Castable

XQuery provides an expression that tests whether a given value is castable into a
given target type. The target type must be an atomic type that is in the in-scope
schema types [err:XPST0051]. In addition, the target type cannot be xs:NOTATION
or xs:anyAtomicType [err:XPST0080]. The optional occurrence indicator "?"

[56] CastableExpr ::= CastExpr ("castable" "as" SingleType)?

[117] SingleType ::= AtomicType "?"?

Page 119 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

denotes that an empty sequence is permitted.

The expression V castable as T returns true if the value V can be successfully
cast into the target type T by using a cast expression; otherwise it returns false.
The castable expression can be used as a predicate to avoid errors at evaluation
time. It can also be used to select an appropriate type for processing of a given
value, as illustrated in the following example:

if ($x castable as hatsize)

 then $x cast as hatsize

 else if ($x castable as IQ)

 then $x cast as IQ

 else $x cast as xs:string

Note:

If the target type of a castable expression is xs:QName, or is a type that is
derived from xs:QName or xs:NOTATION, and the input argument of the
expression is of type xs:string but it is not a literal string, the result of the
castable expression is false.

3.12.5 Constructor Functions

For every atomic type in the in-scope schema types (except xs:NOTATION and
xs:anyAtomicType, which are not instantiable), a constructor function is implicitly
defined. In each case, the name of the constructor function is the same as the
name of its target type (including namespace). The signature of the constructor
function for type T is as follows:

T($arg as xs:anyAtomicType?) as T?

[Definition: The constructor function for a given type is used to convert instances
of other atomic types into the given type. The semantics of the constructor function
call T($arg) are defined to be equivalent to the expression (($arg) cast as T?).]

The constructor functions for xs:QName and for types derived from xs:QName and
xs:NOTATION require their arguments to be string literals or to have a base type
that is the same as the base type of the target type; otherwise a type error
[err:XPTY0004] is raised. This rule is consistent with the semantics of cast
expressions for these types, as defined in 3.12.3 Cast.

The following examples illustrate the use of constructor functions:

� This example is equivalent to ("2000-01-01" cast as xs:date?).

Page 120 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

xs:date("2000-01-01")

� This example is equivalent to (($floatvalue * 0.2E-5) cast as
xs:decimal?).

xs:decimal($floatvalue * 0.2E-5)

� This example returns a xs:dayTimeDuration value equal to 21 days. It is
equivalent to ("P21D" cast as xs:dayTimeDuration?).

xs:dayTimeDuration("P21D")

� If usa:zipcode is a user-defined atomic type in the in-scope schema types,
then the following expression is equivalent to the expression ("12345" cast
as usa:zipcode?).

usa:zipcode("12345")

Note:

An instance of an atomic type that is not in a namespace can be constructed
in either of the following ways:

� By using a cast expression, if the default element/type namespace is
"none". (See 4.13 Default Namespace Declaration for how to
undeclare the default element/type namespace).

17 cast as apple

� By using a constructor function, if the default function namespace is
"none". (See 4.13 Default Namespace Declaration for how to
undeclare the default function namespace).

apple(17)

3.12.6 Treat

XQuery provides an expression called treat that can be used to modify the static
type of its operand.

Like cast, the treat expression takes two operands: an expression and a
SequenceType. Unlike cast, however, treat does not change the dynamic type or
value of its operand. Instead, the purpose of treat is to ensure that an expression
has an expected dynamic type at evaluation time.

The semantics of expr1 treat as type1 are as follows:

[55] TreatExpr ::= CastableExpr ("treat" "as" SequenceType)?

Page 121 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

� During static analysis:

The static type of the treat expression is type1. This enables the expression
to be used as an argument of a function that requires a parameter of type1.

� During expression evaluation:

If expr1 matches type1, using the rules for SequenceType matching, the
treat expression returns the value of expr1; otherwise, it raises a dynamic
error [err:XPDY0050]. If the value of expr1 is returned, its identity is
preserved. The treat expression ensures that the value of its expression
operand conforms to the expected type at run-time.

� Example:

$myaddress treat as element(*, USAddress)

The static type of $myaddress may be element(*, Address), a less specific
type than element(*, USAddress). However, at run-time, the value of
$myaddress must match the type element(*, USAddress) using rules for
SequenceType matching; otherwise a dynamic error is raised
[err:XPDY0050].

3.13 Validate Expressions

A validate expression can be used to validate a document node or an element
node with respect to the in-scope schema definitions, using the schema validation
process defined in [XML Schema]. If the operand of a validate expression does
not evaluate to exactly one document or element node, a type error is raised
[err:XQTY0030]. In this specification, the node that is the operand of a validate
expression is called the operand node.

A validate expression returns a new node with its own identity and with no parent.
The new node and its descendants are given type annotations that are generated
by applying a validation process to the operand node. In some cases, default
values may also be generated by the validation process.

A validate expression may optionally specify a validation mode. The default
validation mode is strict. The result of a validate expression is defined by the
following rules.

1. If the operand node is a document node, its children must consist of exactly
one element node and zero or more comment and processing instruction
nodes, in any order; otherwise, a dynamic error [err:XQDY0061] is raised.

2. The operand node is converted to an XML Information Set ([XML Infoset])
according to the "Infoset Mapping" rules defined in [XQuery/XPath Data

[63] ValidateExpr ::= "validate" ValidationMode? "{" Expr "}"

[64] ValidationMode ::= "lax" | "strict"

Page 122 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

Model (XDM)]. Note that this process discards any existing type annotations.

3. Validity assessment is carried out on the root element information item of the
resulting Infoset, using the in-scope schema definitions as the effective
schema. The process of validation applies recursively to contained elements
and attributes to the extent required by the effective schema. During validity
assessment, the following special rules are in effect:

a. If validation mode is strict, then there must be a top-level element
declaration in the in-scope element declarations that matches the root
element information item in the Infoset, and schema-validity
assessment is carried out using that declaration in accordance with
item 2 of [XML Schema] Part 1, section 5.2, "Assessing Schema-
Validity." If there is no such element declaration, a dynamic error is
raised [err:XQDY0084].

b. If validation mode is lax, then schema-validity assessment is carried
out in accordance with item 3 of [XML Schema] Part 1, section 5.2,
"Assessing Schema-Validity."

If validation mode is lax and the root element information item has
neither a top-level element declaration nor an xsi:type attribute, [XML
Schema] defines the recursive checking of children and attributes as
optional. During processing of an XQuery validate expression, this
recursive checking is required.

c. If the operand node is an element node, the validation rules named
"Validation Root Valid (ID/IDREF)" and "Identity-constraint Satisfied"
are not applied. This means that document-level constraints relating to
uniqueness and referential integrity are not enforced.

d. There is no check that the document contains unparsed entities whose
names match the values of nodes of type xs:ENTITY or xs:ENTITIES.

e. There is no check that the document contains notations whose names
match the values of nodes of type xs:NOTATION.

Note:

Validity assessment is affected by the presence or absence of xsi:type
attributes on the elements being validated, and may generate new
information items such as default attributes.

4. The next step depends on validation mode and on the validity property of
the root element information item in the PSVI that results from the validation
process.

a. If the validity property of the root element information item is valid
(for any validation mode), or if validation mode is lax and the validity
property of the root element information item is notKnown, the PSVI is
converted back into an XDM instance as described in [XQuery/XPath
Data Model (XDM)] Section 3.3, "Construction from a PSVI". The
resulting node (a new node of the same kind as the operand node) is
returned as the result of the validate expression.

Page 123 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

b. Otherwise, a dynamic error is raised [err:XQDY0027].

Note:

The effect of these rules is as follows: If validation mode is strict, the
validated element must have a top-level element declaration in the effective
schema, and must conform to this declaration. If validation mode is lax, the
validated element must conform to its top-level element declaration if such a
declaration exists in the effective schema. If validation mode is lax and there
is no top-level element declaration for the element, and the element has an
xsi:type attribute, then the xsi:type attribute must name a top-level type
definition in the effective schema, and the element must conform to that type.
The validated element corresponds either to the operand node or (if the
operand node is a document node) to its element child.

Note:

During conversion of the PSVI into an XDM instance after validation, any
element information items whose validity property is notKnown are converted
into element nodes with type annotation xs:anyType, and any attribute
information items whose validity property is notKnown are converted into
attribute nodes with type annotation xs:untypedAtomic, as described in

Section 3.3.1.1 Element and Attribute Node Type NamesDM.

3.14 Extension Expressions

[Definition: An extension expression is an expression whose semantics are
implementation-defined.] Typically a particular extension will be recognized by
some implementations and not by others. The syntax is designed so that
extension expressions can be successfully parsed by all implementations, and so
that fallback behavior can be defined for implementations that do not recognize a
particular extension.

An extension expression consists of one or more pragmas, followed by an
expression enclosed in curly braces. [Definition: A pragma is denoted by the
delimiters (# and #), and consists of an identifying QName followed by
implementation-defined content.] The content of a pragma may consist of any
string of characters that does not contain the ending delimiter #). The QName of a
pragma must resolve to a namespace URI and local name, using the statically
known namespaces [err:XPST0081].

[65] ExtensionExpr ::= Pragma+ "{" Expr? "}"

[66] Pragma ::= "(#" S? QName (S PragmaContents)? "#)"

[67] PragmaContents ::= (Char* - (Char* '#)' Char*))

Page 124 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

Note:

Since there is no default namespace for pragmas, a pragma QName must
include a namespace prefix.

Each implementation recognizes an implementation-defined set of namespace
URIs used to denote pragmas.

If the namespace part of a pragma QName is not recognized by the
implementation as a pragma namespace, then the pragma is ignored. If all the
pragmas in an ExtensionExpr are ignored, then the value of the ExtensionExpr is
the value of the expression enclosed in curly braces; if this expression is absent,
then a static error is raised [err:XQST0079].

If an implementation recognizes the namespace of one or more pragmas in an
ExtensionExpr, then the value of the ExtensionExpr, including its error behavior, is
implementation-defined. For example, an implementation that recognizes the
namespace of a pragma QName, but does not recognize the local part of the
QName, might choose either to raise an error or to ignore the pragma.

It is a static error [err:XQST0013] if an implementation recognizes a pragma but
determines that its content is invalid.

If an implementation recognizes a pragma, it must report any static errors in the
following expression even if it will not evaluate that expression (however, static
type errors are raised only if the Static Typing Feature is in effect.)

Note:

The following examples illustrate three ways in which extension expressions
might be used.

� A pragma can be used to furnish a hint for how to evaluate the following
expression, without actually changing the result. For example:

declare namespace exq = "http://example.org/XQueryImplementation";

 (# exq:use-index #)

 { $bib/book/author[name='Berners-Lee'] }

An implementation that recognizes the exq:use-index pragma might use
an index to evaluate the expression that follows. An implementation that
does not recognize this pragma would evaluate the expression in its
normal way.

� A pragma might be used to modify the semantics of the following
expression in ways that would not (in the absence of the pragma) be
conformant with this specification. For example, a pragma might be
used to permit comparison of xs:duration values using implementation-

Page 125 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

defined semantics (this would normally be an error). Such changes to
the language semantics must be scoped to the expression contained
within the curly braces following the pragma.

� A pragma might contain syntactic constructs that are evaluated in place
of the following expression. In this case, the following expression itself (if
it is present) provides a fallback for use by implementations that do not
recognize the pragma. For example:

declare namespace exq = "http://example.org/XQueryImplementation";

 for $x in

 (# exq:distinct //city by @country #)

 { //city[not(@country = preceding::city/@country)] }

 return f:show-city($x)

Here an implementation that recognizes the pragma will return the result
of evaluating the proprietary syntax exq:distinct //city by @country,
while an implementation that does not recognize the pragma will instead
return the result of the expression //city[not(@country =
preceding::city/@country)]. If no fallback expression is required, or if
none is feasible, then the expression between the curly braces may be
omitted, in which case implementations that do not recognize the
pragma will raise a static error.

4 Modules and Prologs

A query can be assembled from one or more fragments called modules.
[Definition: A module is a fragment of XQuery code that conforms to the Module
grammar and can independently undergo the static analysis phase described in
2.2.3 Expression Processing. Each module is either a main module or a library
module.]

[Definition: A main module consists of a Prolog followed by a Query Body.] A

[1] Module ::= VersionDecl? (LibraryModule | MainModule)

[3] MainModule ::= Prolog QueryBody

[4] LibraryModule ::= ModuleDecl Prolog

[6] Prolog ::= ((DefaultNamespaceDecl | Setter | NamespaceDecl
| Import) Separator)* ((VarDecl | FunctionDecl

| OptionDecl) Separator)*

[7] Setter ::= BoundarySpaceDecl | DefaultCollationDecl |
BaseURIDecl | ConstructionDecl |

OrderingModeDecl | EmptyOrderDecl |

CopyNamespacesDecl

[8] Import ::= SchemaImport | ModuleImport

[9] Separator ::= ";"

[30] QueryBody ::= Expr

Page 126 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

query has exactly one main module. In a main module, the Query Body can be
evaluated, and its value is the result of the query.

[Definition: A module that does not contain a Query Body is called a library
module. A library module consists of a module declaration followed by a Prolog.]
A library module cannot be evaluated directly; instead, it provides function and
variable declarations that can be imported into other modules.

The XQuery syntax does not allow a module to contain both a module declaration
and a Query Body.

[Definition: A Prolog is a series of declarations and imports that define the
processing environment for the module that contains the Prolog.] Each declaration
or import is followed by a semicolon. A Prolog is organized into two parts.

The first part of the Prolog consists of setters, imports, namespace declarations,
and default namespace declarations. [Definition: Setters are declarations that set
the value of some property that affects query processing, such as construction
mode, ordering mode, or default collation.] Namespace declarations and default
namespace declarations affect the interpretation of QNames within the query.
Imports are used to import definitions from schemas and modules. [Definition:
Each imported schema or module is identified by its target namespace, which is
the namespace of the objects (such as elements or functions) that are defined by
the schema or module.]

The second part of the Prolog consists of declarations of variables, functions, and
options. These declarations appear at the end of the Prolog because they may be
affected by declarations and imports in the first part of the Prolog.

[Definition: The Query Body, if present, consists of an expression that defines the
result of the query.] Evaluation of expressions is described in 3 Expressions. A
module can be evaluated only if it has a Query Body.

4.1 Version Declaration

[Definition: Any module may contain a version declaration. If present, the version
declaration occurs at the beginning of the module and identifies the applicable
XQuery syntax and semantics for the module.] The version number "1.0" indicates
a requirement that the module must be processed by an implementation that
supports XQuery Version 1.0. If the version declaration is not present, the version
is presumed to be "1.0". An XQuery implementation must raise a static error
[err:XQST0031] when processing a module labeled with a version that the
implementation does not support. It is the intent of the XQuery working group to

[2] VersionDecl ::= "xquery" "version" StringLiteral ("encoding"
StringLiteral)? Separator

Page 127 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

give later versions of this specification numbers other than "1.0", but this intent
does not indicate a commitment to produce any future versions of XQuery, nor if
any are produced, to use any particular numbering scheme.

[Definition: If present, a version declaration may optionally include an encoding
declaration. The value of the string literal following the keyword encoding is an
encoding name, and must conform to the definition of EncName specified in [XML
1.0][err:XQST0087]. The purpose of an encoding declaration is to allow the writer
of a query to provide a string that indicates how the query is encoded, such as
"UTF-8", "UTF-16", or "US-ASCII".] Since the encoding of a query may change as
the query moves from one environment to another, there can be no guarantee that
the encoding declaration is correct.

The handling of an encoding declaration is implementation-dependent. If an
implementation has a priori knowledge of the encoding of a query, it may use this
knowledge and disregard the encoding declaration. The semantics of a query are
not affected by the presence or absence of an encoding declaration.

If a version declaration is present, no Comment may occur before the end of the
version declaration. If such a Comment is present, the result is implementation-
dependent.

Note:

The effect of a Comment before the end of a version declaration is
implementation-dependent because it may suppress query processing by
interfering with detection of the encoding declaration.

The following examples illustrate version declarations:

xquery version "1.0";

xquery version "1.0" encoding "utf-8";

4.2 Module Declaration

[Definition: A module declaration serves to identify a module as a library module.
A module declaration begins with the keyword module and contains a namespace
prefix and a URILiteral.] The URILiteral must be of nonzero length
[err:XQST0088]. The URILiteral identifies the target namespace of the library
module, which is the namespace for all variables and functions exported by the
library module. The name of every variable and function declared in a library

[5] ModuleDecl ::= "module" "namespace" NCName "=" URILiteral
Separator

Page 128 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

module must have a namespace URI that is the same as the target namespace of
the module; otherwise a static error is raised [err:XQST0048]. In the statically
known namespaces of the library module, the namespace prefix specified in the
module declaration is bound to the module's target namespace.

The namespace prefix specified in a module declaration must not be xml or xmlns
[err:XQST0070], and must not be the same as any namespace prefix bound in the
same module by a schema import, by a namespace declaration, or by a module
import with a different target namespace [err:XQST0033].

Any module may import one or more library modules by means of a module import
that specifies the target namespace of the library modules to be imported. When a
module imports one or more library modules, the variables and functions declared
in the imported modules are added to the static context and (where applicable) to
the dynamic context of the importing module.

The following is an example of a module declaration:

module namespace math = "http://example.org/math-functions";

4.3 Boundary-space Declaration

[Definition: A boundary-space declaration sets the boundary-space policy in the
static context, overriding any implementation-defined default. Boundary-space
policy controls whether boundary whitespace is preserved by element constructors
during processing of the query.] If boundary-space policy is preserve, boundary
whitespace is preserved. If boundary-space policy is strip, boundary whitespace
is stripped (deleted). A further discussion of whitespace in constructed elements
can be found in 3.7.1.4 Boundary Whitespace.

The following example illustrates a boundary-space declaration:

declare boundary-space preserve;

If a Prolog contains more than one boundary-space declaration, a static error is
raised [err:XQST0068].

4.4 Default Collation Declaration

[11] BoundarySpaceDecl ::= "declare" "boundary-space" ("preserve" |
"strip")

[19] DefaultCollationDecl ::= "declare" "default" "collation"
URILiteral

Page 129 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

[Definition: A default collation declaration sets the value of the default collation
in the static context, overriding any implementation-defined default.] The default
collation is the collation that is used by functions and operators that require a
collation if no other collation is specified. For example, the gt operator on strings is
defined by a call to the fn:compare function, which takes an optional collation
parameter. Since the gt operator does not specify a collation, the fn:compare
function implements gt by using the default collation.

If neither the implementation nor the Prolog specifies a default collation, the
Unicode codepoint collation (http://www.w3.org/2005/xpath-
functions/collation/codepoint) is used.

The following example illustrates a default collation declaration:

declare default collation

 "http://example.org/languages/Icelandic";

If a default collation declaration specifies a collation by a relative URI, that relative
URI is resolved to an absolute URI using the base URI in the static context. If a
Prolog contains more than one default collation declaration, or the value specified
by a default collation declaration (after resolution of a relative URI, if necessary) is
not present in statically known collations, a static error is raised [err:XQST0038].

4.5 Base URI Declaration

[Definition: A base URI declaration specifies the base URI property of the static
context. The base URI property is used when resolving relative URIs within a
module.] For example, the fn:doc function resolves a relative URI using the base
URI of the calling module.

The following is an example of a base URI declaration:

declare base-uri "http://example.org";

If a Prolog contains more than one base URI declaration, a static error is raised
[err:XQST0032].

In the terminology of [RFC3986] Section 5.1, the URILiteral of the base URI
declaration is considered to be a "base URI embedded in content". If no base URI
declaration is present, the base URI in the static context is established according
to the principles outlined in [RFC3986] Section 5.1—that is, it defaults first to the
base URI of the encapsulating entity, then to the URI used to retrieve the entity,

[20] BaseURIDecl ::= "declare" "base-uri" URILiteral

Page 130 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

and finally to an implementation-defined default. If the URILiteral in the base URI
declaration is a relative URI, then it is made absolute by resolving it with respect to
this same hierarchy. For example, if the URILiteral in the base URI declaration
is ../data/, and the query is contained in a file whose URI is
file:///C:/temp/queries/query.xq, then the base URI in the static context is
file:///C:/temp/data/.

It is not intrinsically an error if this process fails to establish an absolute base URI;
however, the base URI in the static context is then undefined, and any attempt to
use its value may result in an error [err:XPST0001].

4.6 Construction Declaration

[Definition: A construction declaration sets the construction mode in the static
context, overriding any implementation-defined default.] The construction mode
governs the behavior of element and document node constructors. If construction
mode is preserve, the type of a constructed element node is xs:anyType, and all
attribute and element nodes copied during node construction retain their original
types. If construction mode is strip, the type of a constructed element node is
xs:untyped; all element nodes copied during node construction receive the type
xs:untyped, and all attribute nodes copied during node construction receive the
type xs:untypedAtomic.

The following example illustrates a construction declaration:

declare construction strip;

If a Prolog specifies more than one construction declaration, a static error is raised
[err:XQST0067].

4.7 Ordering Mode Declaration

[Definition: An ordering mode declaration sets the ordering mode in the static
context, overriding any implementation-defined default.] This ordering mode
applies to all expressions in a module (including both the Prolog and the Query
Body, if any), unless overridden by an ordered or unordered expression.

Ordering mode affects the behavior of path expressions that include a "/" or "//"
operator or an axis step; union, intersect, and except expressions; and FLWOR

[25] ConstructionDecl ::= "declare" "construction" ("strip" |
"preserve")

[14] OrderingModeDecl ::= "declare" "ordering" ("ordered" |
"unordered")

Page 131 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

expressions that have no order by clause. If ordering mode is ordered, node
sequences returned by path, union, intersect, and except expressions are in
document order; otherwise the order of these return sequences is implementation-
dependent. The effect of ordering mode on FLWOR expressions is described in
3.8 FLWOR Expressions.

The following example illustrates an ordering mode declaration:

declare ordering unordered;

If a Prolog contains more than one ordering mode declaration, a static error is
raised [err:XQST0065].

4.8 Empty Order Declaration

[Definition: An empty order declaration sets the default order for empty
sequences in the static context, overriding any implementation-defined default.
This declaration controls the processing of empty sequences and NaN values as
ordering keys in an order by clause in a FLWOR expression.] An individual order
by clause may override the default order for empty sequences by specifying empty
greatest or empty least.

The following example illustrates an empty order declaration:

declare default order empty least;

If a Prolog contains more than one empty order declaration, a static error is raised
[err:XQST0069].

Note:

It is important to distinguish an empty order declaration from an ordering
mode declaration. An empty order declaration applies only when an order by
clause is present, and specifies how empty sequences are treated by the
order by clause (unless overridden). An ordering mode declaration, on the
other hand, applies only in the absence of an order by clause.

4.9 Copy-Namespaces Declaration

[15] EmptyOrderDecl ::= "declare" "default" "order"
"empty" ("greatest" | "least")

[16] CopyNamespacesDecl ::= "declare" "copy-namespaces" PreserveMode
"," InheritMode

Page 132 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

[Definition: A copy-namespaces declaration sets the value of copy-namespaces
mode in the static context, overriding any implementation-defined default. Copy-
namespaces mode controls the namespace bindings that are assigned when an
existing element node is copied by an element constructor or document
constructor.] Handling of namespace bindings by element constructors is
described in 3.7.1 Direct Element Constructors.

The following example illustrates a copy-namespaces declaration:

declare copy-namespaces preserve, no-inherit;

If a Prolog contains more than one copy-namespaces declaration, a static error is
raised [err:XQST0055].

4.10 Schema Import

[Definition: A schema import imports the element declarations, attribute
declarations, and type definitions from a schema into the in-scope schema
definitions.] The schema to be imported is identified by its target namespace. The
schema import may bind a namespace prefix to the target namespace of the
imported schema, or may declare that target namespace to be the default
element/type namespace. The schema import may also provide optional hints for
locating the schema.

The namespace prefix specified in a schema import must not be xml or xmlns
[err:XQST0070], and must not be the same as any namespace prefix bound in the
same module by another schema import, a module import, a namespace
declaration, or a module declaration [err:XQST0033].

The first URILiteral in a schema import specifies the target namespace of the
schema to be imported. The URILiterals that follow the at keyword are optional
location hints, and can be interpreted or disregarded in an implementation-
dependent way. Multiple location hints might be used to indicate more than one
possible place to look for the schema or multiple physical resources to be
assembled to form the schema.

A schema import that specifies a zero-length string as target namespace is

[17] PreserveMode ::= "preserve" | "no-preserve"

[18] InheritMode ::= "inherit" | "no-inherit"

[21] SchemaImport ::= "import" "schema" SchemaPrefix? URILiteral ("at"
URILiteral ("," URILiteral)*)?

[22] SchemaPrefix ::= ("namespace" NCName "=") | ("default" "element"
"namespace")

Page 133 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

considered to import a schema that has no target namespace. Such a schema
import may not bind a namespace prefix [err:XQST0057], but it may set the default
element/type namespace to a zero-length string (representing "no namespace"),
thus enabling the definitions in the imported namespace to be referenced. If the
default element/type namespace is not set to "no namespace", there is no way to
reference the definitions in an imported schema that has no target namespace.

It is a static error [err:XQST0058] if more than one schema import in the same
Prolog specifies the same target namespace. It is a static error [err:XQST0059] if
the implementation is not able to process a schema import by finding a valid
schema with the specified target namespace. It is a static error [err:XQST0035] if
multiple imported schemas, or multiple physical resources within one schema,
contain definitions for the same name in the same symbol space (for example, two
definitions for the same element name, even if the definitions are consistent).
However, it is not an error to import the schema with target namespace
http://www.w3.org/2001/XMLSchema (predeclared prefix xs), even though the built-
in types defined in this schema are implicitly included in the in-scope schema
types.

It is a static error [err:XQST0012] if the set of definitions contained in all schemas
imported by a Prolog do not satisfy the conditions for schema validity specified in
Sections 3 and 5 of [XML Schema] Part 1--i.e., each definition must be valid,
complete, and unique.

The following example imports a schema, specifying both its target namespace
and its location, and binding the prefix soap to the target namespace:

import schema namespace soap="http://www.w3.org/2003/05/soap-envelope"

at "http://www.w3.org/2003/05/soap-envelope/";

The following example imports a schema by specifying only its target namespace,
and makes it the default element/type namespace:

import schema default element namespace "http://example.org/abc";

The following example imports a schema that has no target namespace, providing
a location hint, and sets the default element/type namespace to "no namespace"
so that the definitions in the imported schema can be referenced:

import schema default element namespace ""

at "http://example.org/xyz.xsd";

The following example imports a schema that has no target namespace and sets
the default element/type namespace to "no namespace". Since no location hint is

Page 134 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

provided, it is up to the implementation to find the schema to be imported.

import schema default element namespace "";

4.11 Module Import

[Definition: A module import imports the function declarations and variable
declarations from one or more library modules into the function signatures and in-
scope variables of the importing module.] Each module import names a target
namespace and imports an implementation-defined set of modules that share this
target namespace. The module import may bind a namespace prefix to the target
namespace, and it may provide optional hints for locating the modules to be
imported.

The namespace prefix specified in a module import must not be xml or xmlns
[err:XQST0070], and must not be the same as any namespace prefix bound in the
same module by another module import, a schema import, a namespace
declaration, or a module declaration with a different target namespace
[err:XQST0033].

The first URILiteral in a module import must be of nonzero length [err:XQST0088],
and specifies the target namespace of the modules to be imported. The
URILiterals that follow the at keyword are optional location hints, and can be
interpreted or disregarded in an implementation-defined way.

It is a static error [err:XQST0047] if more than one module import in a Prolog
specifies the same target namespace. It is a static error [err:XQST0059] if the
implementation is not able to process a module import by finding a valid module
definition with the specified target namespace. It is a static error if the expanded
QName and arity of a function declared in an imported module are respectively
equal to the expanded QName and arity of a function declared in the importing
module or in another imported module (even if the declarations are consistent)
[err:XQST0034]. It is a static error if the expanded QName of a variable declared
in an imported module is equal (as defined by the eq operator) to the expanded
QName of a variable declared in the importing module or in another imported
module (even if the declarations are consistent) [err:XQST0049].

Each module has its own static context. A module import imports only functions
and variable declarations; it does not import other objects from the imported
modules, such as in-scope schema definitions or statically known namespaces.
Module imports are not transitive—that is, importing a module provides access
only to function and variable declarations contained directly in the imported

[23] ModuleImport ::= "import" "module" ("namespace" NCName "=")?
URILiteral ("at" URILiteral ("," URILiteral)*)?

Page 135 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

module. For example, if module A imports module B, and module B imports
module C, module A does not have access to the functions and variables declared
in module C.

A module may import its own target namespace (this is interpreted as importing an
implementation-defined set of other modules that share its target namespace.)
However, it is a static error [err:XQST0073] if the graph of module imports
contains a cycle (that is, if there exists a sequence of modules M1 ... Mn such that

each Mi imports Mi+1 and Mn imports M1), unless all the modules in the cycle

share a common namespace.

It is a static error [err:XQST0036] to import a module if the importing module's in-
scope schema types do not include definitions for the schema type names that
appear in the declarations of variables and functions (whether in an argument type
or return type) that are present in the imported module and are referenced in the
importing module.

To illustrate the above rules, suppose that a certain schema defines a type named
triangle. Suppose that a library module imports the schema, binds its target
namespace to the prefix geometry, and declares a function with the following
function signature: math:area($t as geometry:triangle) as xs:double. If a
query wishes to use this function, it must import both the library module and the
schema on which it is based. Importing the library module alone would not provide
access to the definition of the type geometry:triangle used in the signature of the
area function.

[Definition: A module M1 directly depends on another module M2 (different from

M1) if a variable or function declared in M1 depends on a variable or function

declared in M2.] It is a static error [err:XQST0093] to import a module M1 if there

exists a sequence of modules M1 ... Mi ... M1 such that each module directly

depends on the next module in the sequence (informally, if M1 depends on itself

through some chain of module dependencies.)

The following example illustrates a module import:

import module namespace math = "http://example.org/math-functions";

4.12 Namespace Declaration

[Definition: A namespace declaration declares a namespace prefix and
associates it with a namespace URI, adding the (prefix, URI) pair to the set of

[10] NamespaceDecl ::= "declare" "namespace" NCName "=" URILiteral

Page 136 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

statically known namespaces.] The namespace declaration is in scope throughout
the query in which it is declared, unless it is overridden by a namespace
declaration attribute in a direct element constructor.

If the URILiteral part of a namespace declaration is a zero-length string, any
existing namespace binding for the given prefix is removed from the statically
known namespaces. This feature provides a way to remove predeclared
namespace prefixes such as local.

The following query illustrates a namespace declaration:

declare namespace foo = "http://example.org";

<foo:bar> Lentils </foo:bar>

In the query result, the newly created node is in the namespace associated with
the namespace URI http://example.org.

The namespace prefix specified in a namespace declaration must not be xml or
xmlns [err:XQST0070], and must not be the same as any namespace prefix bound
in the same module by a module import, schema import, module declaration, or
another namespace declaration [err:XQST0033].

It is a static error [err:XPST0081] if an expression contains a QName with a
namespace prefix that is not in the statically known namespaces.

XQuery has several predeclared namespace prefixes that are present in the
statically known namespaces before each query is processed. These prefixes may
be used without an explicit declaration. They may be overridden by namespace
declarations in a Prolog or by namespace declaration attributes on constructed
elements (however, the prefix xml may not be redeclared, and no other prefix may
be bound to the namespace URI associated with the prefix xml [err:XQST0070]).
The predeclared namespace prefixes are as follows:

� xml = http://www.w3.org/XML/1998/namespace

� xs = http://www.w3.org/2001/XMLSchema

� xsi = http://www.w3.org/2001/XMLSchema-instance

� fn = http://www.w3.org/2005/xpath-functions

� local = http://www.w3.org/2005/xquery-local-functions (see 4.15
Function Declaration.)

Additional predeclared namespace prefixes may be added to the statically known
namespaces by an implementation.

When element or attribute names are compared, they are considered identical if

Page 137 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

the local parts and namespace URIs match on a codepoint basis. Namespace
prefixes need not be identical for two names to match, as illustrated by the
following example:

declare namespace xx = "http://example.org";

let $i := <foo:bar xmlns:foo = "http://example.org">

 <foo:bing> Lentils </foo:bing>

 </foo:bar>

return $i/xx:bing

Although the namespace prefixes xx and foo differ, both are bound to the
namespace URI "http://example.org". Since xx:bing and foo:bing have the
same local name and the same namespace URI, they match. The output of the
above query is as follows.

<foo:bing xmlns:foo = "http://example.org"> Lentils </foo:bing>

4.13 Default Namespace Declaration

Default namespace declarations can be used in a Prolog to facilitate the use of
unprefixed QNames. The following kinds of default namespace declarations are
supported:

� A default element/type namespace declaration declares a namespace
URI that is associated with unprefixed names of elements and types. This
declaration is recorded as the default element/type namespace in the static
context. A Prolog may contain at most one default element/type namespace
declaration [err:XQST0066]. If the URILiteral in a default element/type
namespace declaration is a zero-length string, the default element/type
namespace is undeclared (set to "none"), and unprefixed names of elements
and types are considered to be in no namespace. The following example
illustrates the declaration of a default namespace for elements and types:

declare default element namespace "http://example.org/names";

A default element/type namespace declaration may be overridden by a
namespace declaration attribute in a direct element constructor.

If no default element/type namespace declaration is present, unprefixed
element and type names are in no namespace (however, an implementation
may define a different default as specified in C.1 Static Context
Components.)

� A default function namespace declaration declares a namespace URI that

[12] DefaultNamespaceDecl ::= "declare" "default" ("element" |
"function") "namespace" URILiteral

Page 138 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

is associated with unprefixed function names in function calls and function
declarations. This declaration is recorded as the default function namespace
in the static context. A Prolog may contain at most one default function
namespace declaration [err:XQST0066]. If the StringLiteral in a default
function namespace declaration is a zero-length string, the default function
namespace is undeclared (set to "none"). In that case, any functions that are
associated with a namespace can be called only by using an explicit
namespace prefix.

If no default function namespace declaration is present, the default function
namespace is the namespace of XPath/XQuery functions,
http://www.w3.org/2005/xpath-functions (however, an implementation
may define a different default as specified in C.1 Static Context
Components.)

The following example illustrates the declaration of a default function
namespace:

declare default function namespace

 "http://example.org/math-functions";

The effect of declaring a default function namespace is that all functions in
the default function namespace, including implicitly-declared constructor
functions, can be invoked without specifying a namespace prefix. When a
function call uses a function name with no prefix, the local name of the
function must match a function (including implicitly-declared constructor
functions) in the default function namespace [err:XPST0017].

Note:

Only constructor functions can be in no namespace.

Unprefixed attribute names and variable names are in no namespace.

4.14 Variable Declaration

A variable declaration adds the static type of a variable to the in-scope variables,
and may also add a value for the variable to the variable values. If the expanded
QName of the variable is equal (as defined by the eq operator) to the name of
another variable in in-scope variables, a static error is raised [err:XQST0049].

If a variable declaration includes a type, that type is added to the static context as
the type of the variable. If a variable declaration includes an expression but not an
explicit type, the type of the variable is inferred from static analysis of the

[24] VarDecl ::= "declare" "variable" "$" QName
TypeDeclaration? ((":=" ExprSingle) |

"external")

[88] VarName ::= QName

[118] TypeDeclaration ::= "as" SequenceType

Page 139 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

expression and is added to the static context. If a variable declaration includes
both a type and an expression, the value returned by the expression must match
the declared type according to the rules for SequenceType matching; otherwise a
type error is raised [err:XPTY0004].

[Definition: If a variable declaration includes an expression, the expression is
called an initializing expression.] The initializing expression for a given variable
must be evaluated before the evaluation of any expression that references the
variable. The static context for an initializing expression includes all functions that
are declared or imported anywhere in the Prolog, but it includes only those
variables and namespaces that are declared or imported earlier in the Prolog than
the variable that is being initialized.

[Definition: A variable $x depends on a variable $y or a function f2 if a reference
to $y or f2 appears in the initializing expression of $x, or if there exists a variable
$z or a function f3 such that $x depends on $z or f3 and $z or f3 depends on $y or
f2.]

[Definition: A function f1 depends on a variable $y or a function f2 if a reference
to $y or f2 appears in the body of f1, or if there exists a variable $z or a function f3
such that f1 depends on $z or f3 and $z or f3 depends on $y or f2.]

If a variable depends on itself, a static error is raised [err:XQST0054].

If the variable declaration includes the keyword external, a value must be
provided for the variable by the external environment before the query can be
evaluated. If an external variable declaration also includes a declared type, the
value provided by the external environment must match the declared type
according to the rules for SequenceType matching (see 2.2.5 Consistency
Constraints). If an external variable declaration does not include a declared type,
the type and a matching value must be provided by the external environment at
evaluation time. The static type of such a variable is considered to be item()*.
Any reference to a variable that was declared external, but was not bound to a
value by the external environment, raises a dynamic error [err:XPDY0002].

All variable names declared in a library module must (when expanded) be in the
target namespace of the library module [err:XQST0048]. When a library module is
imported, variables declared in the imported module are added to the in-scope
variables of the importing module.

Variable names that have no namespace prefix are in no namespace. Variable
declarations that have no namespace prefix may appear only in a main module.

The term variable declaration always refers to a declaration of a variable in a
Prolog. The binding of a variable to a value in a query expression, such as a
FLWOR expression, is known as a variable binding, and does not make the

Page 140 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

variable visible to an importing module.

Here are some examples of variable declarations:

� The following declaration specifies both the type and the value of a variable.
This declaration causes the type xs:integer to be associated with variable
$x in the static context, and the value 7 to be associated with variable $x in
the dynamic context.

declare variable $x as xs:integer := 7;

� The following declaration specifies a value but not a type. The static type of
the variable is inferred from the static type of its value. In this case, the
variable $x has a static type of xs:decimal, inferred from its value which is
7.5.

declare variable $x := 7.5;

� The following declaration specifies a type but not a value. The keyword
external indicates that the value of the variable will be provided by the
external environment. At evaluation time, if the variable $x in the dynamic
context does not have a value of type xs:integer, a type error is raised.

declare variable $x as xs:integer external;

� The following declaration specifies neither a type nor a value. It simply
declares that the query depends on the existence of a variable named $x,
whose type and value will be provided by the external environment. During
query analysis, the type of $x is considered to be item()*. During query
evaluation, the dynamic context must include a type and a value for $x, and
its value must be compatible with its type.

declare variable $x external;

� The following declaration, which might appear in a library module, declares a
variable whose name includes a namespace prefix:

declare variable $math:pi as xs:double := 3.14159E0;

4.15 Function Declaration

In addition to the built-in functions described in [XQuery 1.0 and XPath 2.0
Functions and Operators], XQuery allows users to declare functions of their own.
A function declaration specifies the name of the function, the names and datatypes
of the parameters, and the datatype of the result. All datatypes are specified using
the syntax described in 2.5 Types. A function declaration causes the declared
function to be added to the function signatures of the module in which it appears.

[26] FunctionDecl ::= "declare" "function" QName "(" ParamList?

Page 141 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

A function declaration specifies whether a function is user-defined or external.
[Definition: For a user-defined function, the function declaration includes an
expression called the function body that defines how the result of the function is
computed from its parameters.]. The static context for a function body includes all
functions that are declared or imported anywhere in the Prolog, but it includes only
those variables and namespaces that are declared or imported earlier in the
Prolog than the function that is being defined.

[Definition: External functions are functions that are implemented outside the
query environment.] For example, an XQuery implementation might provide a set
of external functions in addition to the core function library described in [XQuery
1.0 and XPath 2.0 Functions and Operators]. External functions are identified by
the keyword external. The purpose of a function declaration for an external
function is to declare the datatypes of the function parameters and result, for use
in type checking of the query that contains or imports the function declaration.

An XQuery implementation may provide a facility whereby external functions can
be implemented using a host programming language, but it is not required to do
so. If such a facility is provided, the protocols by which parameters are passed to
an external function, and the result of the function is returned to the invoking
query, are implementation-defined. An XQuery implementation may augment the
type system of [XQuery/XPath Data Model (XDM)] with additional types that are
designed to facilitate exchange of data with host programming languages, or it
may provide mechanisms for the user to define such types. For example, a type
might be provided that encapsulates an object returned by an external function,
such as an SQL database connection. These additional types, if defined, are
considered to be derived by restriction from xs:anyAtomicType.

Every user-defined function must be in a namespace--that is, every declared
function name must (when expanded) have a non-null namespace URI
[err:XQST0060]. If the function name in a function declaration has no namespace
prefix, it is considered to be in the default function namespace. Every function
name declared in a library module must (when expanded) be in the target
namespace of the library module [err:XQST0048]. It is a static error
[err:XQST0045] if the function name in a function declaration (when expanded) is
in any of the following namespaces:

� http://www.w3.org/XML/1998/namespace

� http://www.w3.org/2001/XMLSchema

")" ("as" SequenceType)? (EnclosedExpr |

"external")

[27] ParamList ::= Param ("," Param)*

[28] Param ::= "$" QName TypeDeclaration?

[118] TypeDeclaration ::= "as" SequenceType

Page 142 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

� http://www.w3.org/2001/XMLSchema-instance

� http://www.w3.org/2005/xpath-functions

It is a static error [err:XQST0034] if the expanded QName and arity (number of
arguments) of the declared function are equal (as defined by the eq operator) to
the expanded QName and arity of another function in function signatures.

In order to allow main modules to declare functions for local use within the module
without defining a new namespace, XQuery predefines the namespace prefix
local to the namespace http://www.w3.org/2005/xquery-local-functions. It is
suggested (but not required) that this namespace be used for defining local
functions.

If a function parameter is declared using a name but no type, its default type is
item()*. If the result type is omitted from a function declaration, its default result
type is item()*.

The parameters of a function declaration are considered to be variables whose
scope is the function body. It is an static error [err:XQST0039] for a function
declaration to have more than one parameter with the same name. The type of a
function parameter can be any type that can be expressed as a sequence type.

The following example illustrates the declaration and use of a local function that
accepts a sequence of employee elements, summarizes them by department, and
returns a sequence of dept elements.

� Using a function, prepare a summary of employees that are located in
Denver.

declare function local:summary($emps as element(employee)*)

 as element(dept)*

{

 for $d in fn:distinct-values($emps/deptno)

 let $e := $emps[deptno = $d]

 return

 <dept>

 <deptno>{$d}</deptno>

 <headcount> {fn:count($e)} </headcount>

 <payroll> {fn:sum($e/salary)} </payroll>

 </dept>

};

local:summary(fn:doc("acme_corp.xml")//employee[location = "Denver"])

Rules for converting function arguments to their declared parameter types, and for
converting the result of a function to its declared result type, are described in 3.1.5
Function Calls.

Page 143 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

A function declaration may be recursive—that is, it may reference itself. Mutually
recursive functions, whose bodies reference each other, are also allowed. The
following example declares a recursive function that computes the maximum depth
of a node hierarchy, and calls the function to find the maximum depth of a
particular document. In its declaration, the user-declared function local:depth
calls the built-in functions empty and max, which are in the default function
namespace.

� Find the maximum depth of the document named partlist.xml.

declare function local:depth($e as node()) as xs:integer

{

 (: A node with no children has depth 1 :)

 (: Otherwise, add 1 to max depth of children :)

 if (fn:empty($e/*)) then 1

 else fn:max(for $c in $e/* return local:depth($c)) + 1

};

local:depth(fn:doc("partlist.xml"))

Since a constructor function is effectively declared for every user-defined atomic
type in the in-scope schema types, a static error [err:XQST0034] is raised if the
Prolog attempts to declare a single-parameter function with the same expanded
QName as any of these types.

4.16 Option Declaration

[Definition: An option declaration declares an option that affects the behavior of a
particular implementation. Each option consists of an identifying QName and a
StringLiteral.]

Typically, a particular option will be recognized by some implementations and not
by others. The syntax is designed so that option declarations can be successfully
parsed by all implementations.

The QName of an option must resolve to a namespace URI and local name, using
the statically known namespaces [err:XPST0081].

Note:

There is no default namespace for options.

Each implementation recognizes an implementation-defined set of namespace
URIs used to denote option declarations.

[13] OptionDecl ::= "declare" "option" QName StringLiteral

Page 144 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

If the namespace part of the QName is not a namespace recognized by the
implementation as one used to denote option declarations, then the option
declaration is ignored.

Otherwise, the effect of the option declaration, including its error behavior, is
implementation-defined. For example, if the local part of the QName is not
recognized, or if the StringLiteral does not conform to the rules defined by the
implementation for the particular option declaration, the implementation may
choose whether to report an error, ignore the option declaration, or take some
other action.

Implementations may impose rules on where particular option declarations may
appear relative to variable declarations and function declarations, and the
interpretation of an option declaration may depend on its position.

An option declaration must not be used to change the syntax accepted by the
processor, or to suppress the detection of static errors. However, it may be used
without restriction to modify the semantics of the query. The scope of the option
declaration is implementation-defined—for example, an option declaration might
apply to the whole query, to the current module, or to the immediately following
function declaration.

The following examples illustrate several possible uses for option declarations:

� This option declaration might be used to set a serialization parameter:

declare namespace exq = "http://example.org/XQueryImplementation";

declare option exq:output "encoding = iso-8859-1";

� This option declaration might be used to specify how comments in source
documents returned by the fn:doc() function should be handled:

declare option exq:strip-comments "true";

� This option declaration might be used to associate a namespace used in
function names with a Java class:

declare namespace math = "http://example.org/MathLibrary";

declare option exq:java-class "math = java.lang.Math";

5 Conformance

This section defines the conformance criteria for an XQuery processor. In this
section, the following terms are used to indicate the requirement levels defined in
[RFC 2119]. [Definition: MUST means that the item is an absolute requirement of
the specification.] [Definition: MAY means that an item is truly optional.] [Definition:
SHOULD means that there may exist valid reasons in particular circumstances to
ignore a particular item, but the full implications must be understood and carefully

Page 145 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

weighed before choosing a different course.]

An XQuery processor that claims to conform to this specification MUST include a
claim of Minimal Conformance as defined in 5.1 Minimal Conformance. In
addition to a claim of Minimal Conformance, it MAY claim conformance to one or
more optional features defined in 5.2 Optional Features.

5.1 Minimal Conformance

Minimal Conformance to this specification MUST include all of the following items:

1. Support for everything specified in this document except those features
specified in 5.2 Optional Features to be optional. If an implementation does
not provide a given optional feature, it MUST implement any requirements
specified in 5.2 Optional Features for implementations that do not provide
that feature.

2. A definition of every item specified to be implementation-defined, unless that
item is part of an optional feature that is not supported by the
implementation. A list of implementation-defined items can be found in D
Implementation-Defined Items.

Note:

Implementations are not required to define items specified to be
implementation-dependent.

3. Support for [XQuery/XPath Data Model (XDM)], as specified in 5.3 Data
Model Conformance.

4. Support for all functions defined in [XQuery 1.0 and XPath 2.0 Functions and
Operators].

5.2 Optional Features

5.2.1 Schema Import Feature

[Definition: The Schema Import Feature permits the query Prolog to contain a
schema import.]

If an XQuery implementation does not support the Schema Import Feature, it
MUST raise a static error [err:XQST0009] if it encounters a schema import.

Note:

If an implementation does not support the Schema Import Feature, the in-
scope schema types consist only of built-in and implementation-defined
schema type definitions, as described in C.1 Static Context Components.

Page 146 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

5.2.2 Schema Validation Feature

[Definition: The Schema Validation Feature permits a query to contain a
validate expression (see 3.13 Validate Expressions.)]

If an XQuery implementation does not support the Schema Validation Feature, it
MUST raise a static error [err:XQST0075] if it encounters a validate expression.

5.2.3 Static Typing Feature

[Definition: The Static Typing Feature provides support for the static semantics
defined in [XQuery 1.0 and XPath 2.0 Formal Semantics], and requires
implementations to detect and report type errors during the static analysis phase.]

If an implementation does not support the Static Typing Feature, but can
nevertheless determine during the static analysis phase that an expression, if
evaluated, will necessarily raise a type error at run time, the implementation MAY
raise that error during the static analysis phase. The choice of whether to raise
such an error at analysis time is implementation dependent.

Note:

An implementation that does not support the Static Typing Feature is not
required to raise type errors during the static analysis phase; however, it
MUST detect and raise non-type-related static errors during the static analysis
phase.

5.2.3.1 Static Typing Extensions

In some cases, the static typing rules defined in [XQuery 1.0 and XPath 2.0
Formal Semantics] are not very precise (see, for example, the type inference rules
for the ancestor axes—parent, ancestor, and ancestor-or-self—and for the function
fn:root). Some implementations may wish to support more precise static typing
rules.

A conforming implementation that implements the Static Typing Feature MAY also
provide one or more static typing extensions. [Definition: A static typing
extension is an implementation-defined type inference rule that infers a more
precise static type than that inferred by the type inference rules in [XQuery 1.0 and

XPath 2.0 Formal Semantics].] See Section 6.1.1 Static Typing ExtensionsFS for a
formal definition of the constraints on static typing extensions.

5.2.4 Full Axis Feature

[Definition: The following axes are designated as optional axes: ancestor,
ancestor-or-self, following, following-sibling, preceding, and preceding-

Page 147 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

sibling.]

[Definition: A conforming XQuery implementation that supports the Full Axis
Feature MUST support all the optional axes.]

Conforming XQuery implementations that do not support the Full Axis Feature
MAY support one or more optional axes; it is implementation-defined which
optional axes are supported by such implementations. A conforming
implementation that encounters a reference to an optional axis that it does not
support MUST raise a static error [err:XPST0010].

Note:

XQuery does not recognize the namespace axis (defined by XPath 1.0 and
deprecated by XPath 2.0).

5.2.5 Module Feature

[Definition: A conforming XQuery implementation that supports the Module
Feature allows a query Prolog to contain a Module Import and allows library
modules to be created.]

A conforming implementation that does not support the Module Feature MUST
raise a static error [err:XQST0016] if it encounters a module declaration or a
module import. Since a module declaration is required in a library module, the
Module Feature is required in order to create a library module.

Note:

In the absence of the Module Feature, each query consists of a single main
module.

5.2.6 Serialization Feature

[Definition: A conforming XQuery implementation that supports the Serialization
Feature MUST provide means for serializing the result of a query, as specified in
2.2.4 Serialization.]

A conforming XQuery implementation that supports the Serialization Feature
MUST conform to C.3 Serialization Parameters. The means by which
serialization is invoked is implementation-defined.

If an error is raised during the serialization process as specified in [XSLT 2.0 and
XQuery 1.0 Serialization], an conforming XQuery implementation MUST report the
error to the calling environment.

Page 148 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

Note:

Not all implementations need to serialize. For instance, an implementation
might provide results via an XML API instead of producing a textual
representation.

5.3 Data Model Conformance

All XQuery implementations process data represented in the data model as
specified in [XQuery/XPath Data Model (XDM)]. The data model specification
relies on languages such as XQuery to specify conformance criteria for the data
model in their respective environments, and suggests that the following issues
should be considered:

1. Support for normative construction from an infoset. A conforming
implementation MAY choose to claim conformance to Section 3.2

Construction from an InfosetDM, which defines a normative way to construct
an XDM instance from an XML document that is merely well-formed or is
governed by a DTD.

2. Support for normative construction from a PSVI. A conforming
implementation MAY choose to claim conformance to Section 3.3

Construction from a PSVIDM, which defines a normative way to construct an
XDM instance from an XML document that is governed by a W3C XML
Schema.

3. Support for XML 1.0 and XML 1.1. The [XQuery/XPath Data Model (XDM)]
supports either [XML 1.0] or [XML 1.1]. In XQuery, the choice of which XML
version to support is implementation-defined.

At the time of writing there is no published version of XML Schema that
references the XML 1.1 specifications. This means that datatypes such as
xs:NCName and xs:ID are constrained by the XML 1.0 rules. It is
recommended that an XQuery 1.0 processor should implement the rules
defined by later versions of XML Schema as they become available.

Note:

For suggestions on processing XML 1.1 documents, see [XML 1.1 and
Schema 1.0].

4. Ranges of data values. In XQuery, the following limits are implementation-
defined:

a. For the xs:decimal type, the maximum number of decimal digits
(totalDigits facet) (must be at least 18).

b. For the types xs:date, xs:time, xs:dateTime, xs:gYear, and
xs:gYearMonth: the maximum value of the year component and the
maximum number of fractional second digits (must be at least 3).

c. For the xs:duration type: the maximum absolute values of the years,

Page 149 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

months, days, hours, minutes, and seconds components.

d. For the xs:yearMonthDuration type: the maximum absolute value,
expressed as an integer number of months.

e. For the xs:dayTimeDuration type: the maximum absolute value,
expressed as a decimal number of seconds.

f. For the types xs:string, xs:hexBinary, xs:base64Binary, xs:QName,
xs:anyURI, xs:NOTATION, and types derived from them: limitations (if
any) imposed by the implementation on lengths of values.

The limits listed above need not be fixed, but may depend on environmental
factors such as system resources. For example, the length of a value of type
xs:string may be limited by available memory.

A XQuery Grammar

A.1 EBNF

The grammar of XQuery uses the same simple Extended Backus-Naur Form
(EBNF) notation as [XML 1.0] with the following minor differences.

� All named symbols have a name that begins with an uppercase letter.

� It adds a notation for referring to productions in external specs.

� Comments or extra-grammatical constraints on grammar productions are
between '/*' and '*/' symbols.

� A 'xgc:' prefix is an extra-grammatical constraint, the details of which
are explained in A.1.2 Extra-grammatical Constraints

� A 'ws:' prefix explains the whitespace rules for the production, the
details of which are explained in A.2.4 Whitespace Rules

� A 'gn:' prefix means a 'Grammar Note', and is meant as a clarification
for parsing rules, and is explained in A.1.3 Grammar Notes. These
notes are not normative.

The terminal symbols for this grammar include the quoted strings used in the
production rules below, and the terminal symbols defined in section A.2.1
Terminal Symbols.

The EBNF notation is described in more detail in A.1.1 Notation.

To increase readability, the EBNF in the main body of this document omits some
of these notational features. This appendix is the normative version of the EBNF.

[1] Module ::= VersionDecl?
(LibraryModule |

MainModule)

Page 150 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

[2] VersionDecl ::= "xquery" "version"
StringLiteral ("encoding"

StringLiteral)? Separator

[3] MainModule ::= Prolog QueryBody

[4] LibraryModule ::= ModuleDecl Prolog

[5] ModuleDecl ::= "module" "namespace"
NCName "=" URILiteral

Separator

[6] Prolog ::= ((DefaultNamespaceDecl |
Setter | NamespaceDecl |

Import) Separator)*

((VarDecl | FunctionDecl |

OptionDecl) Separator)*

[7] Setter ::= BoundarySpaceDecl |
DefaultCollationDecl |

BaseURIDecl |

ConstructionDecl |

OrderingModeDecl |

EmptyOrderDecl |

CopyNamespacesDecl

[8] Import ::= SchemaImport |
ModuleImport

[9] Separator ::= ";"

[10] NamespaceDecl ::= "declare" "namespace"
NCName "=" URILiteral

[11] BoundarySpaceDecl ::= "declare" "boundary-
space" ("preserve" |

"strip")

[12] DefaultNamespaceDecl ::= "declare"
"default" ("element" |

"function") "namespace"

URILiteral

[13] OptionDecl ::= "declare" "option" QName
StringLiteral

[14] OrderingModeDecl ::= "declare"
"ordering" ("ordered" |

"unordered")

[15] EmptyOrderDecl ::= "declare" "default"
"order"

"empty" ("greatest" |

"least")

[16] CopyNamespacesDecl ::= "declare" "copy-
namespaces" PreserveMode

"," InheritMode

[17] PreserveMode ::= "preserve" | "no-preserve"

[18] InheritMode ::= "inherit" | "no-inherit"

[19] DefaultCollationDecl ::= "declare" "default"
"collation" URILiteral

[20] BaseURIDecl ::= "declare" "base-uri"
URILiteral

Page 151 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

[21] SchemaImport ::= "import" "schema"
SchemaPrefix? URILiteral

("at" URILiteral (","

URILiteral)*)?

[22] SchemaPrefix ::= ("namespace" NCName "=") |
("default" "element"

"namespace")

[23] ModuleImport ::= "import"
"module" ("namespace"

NCName "=")? URILiteral

("at" URILiteral (","

URILiteral)*)?

[24] VarDecl ::= "declare" "variable" "$"
QName TypeDeclaration?

((":=" ExprSingle) |

"external")

[25] ConstructionDecl ::= "declare"
"construction" ("strip" |

"preserve")

[26] FunctionDecl ::= "declare" "function" QName
"(" ParamList? ")" ("as"

SequenceType)?

(EnclosedExpr |

"external")

[27] ParamList ::= Param ("," Param)*

[28] Param ::= "$" QName TypeDeclaration?

[29] EnclosedExpr ::= "{" Expr "}"

[30] QueryBody ::= Expr

[31] Expr ::= ExprSingle (","
ExprSingle)*

[32] ExprSingle ::= FLWORExpr
| QuantifiedExpr

| TypeswitchExpr

| IfExpr

| OrExpr

[33] FLWORExpr ::= (ForClause | LetClause)+
WhereClause?

OrderByClause? "return"

ExprSingle

[34] ForClause ::= "for" "$" VarName
TypeDeclaration?

PositionalVar? "in"

ExprSingle ("," "$"

VarName TypeDeclaration?

PositionalVar? "in"

ExprSingle)*

[35] PositionalVar ::= "at" "$" VarName

[36] LetClause ::= "let" "$" VarName
TypeDeclaration? ":="

ExprSingle ("," "$"

Page 152 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

VarName TypeDeclaration?

":=" ExprSingle)*

[37] WhereClause ::= "where" ExprSingle

[38] OrderByClause ::= (("order" "by") |
("stable" "order" "by"))

OrderSpecList

[39] OrderSpecList ::= OrderSpec ("," OrderSpec)*

[40] OrderSpec ::= ExprSingle OrderModifier

[41] OrderModifier ::= ("ascending" |
"descending")?

("empty" ("greatest" |

"least"))? ("collation"

URILiteral)?

[42] QuantifiedExpr ::= ("some" | "every") "$"
VarName TypeDeclaration?

"in" ExprSingle ("," "$"

VarName TypeDeclaration?

"in" ExprSingle)*

"satisfies" ExprSingle

[43] TypeswitchExpr ::= "typeswitch" "(" Expr ")"
CaseClause+ "default" ("$"

VarName)? "return"

ExprSingle

[44] CaseClause ::= "case" ("$" VarName "as")?
SequenceType "return"

ExprSingle

[45] IfExpr ::= "if" "(" Expr ")" "then"
ExprSingle "else"

ExprSingle

[46] OrExpr ::= AndExpr ("or" AndExpr)*

[47] AndExpr ::= ComparisonExpr ("and"
ComparisonExpr)*

[48] ComparisonExpr ::= RangeExpr ((ValueComp
| GeneralComp

| NodeComp) RangeExpr)?

[49] RangeExpr ::= AdditiveExpr ("to"
AdditiveExpr)?

[50] AdditiveExpr ::= MultiplicativeExpr (("+"
| "-")

MultiplicativeExpr)*

[51] MultiplicativeExpr ::= UnionExpr (("*" | "div" |
"idiv" | "mod")

UnionExpr)*

[52] UnionExpr ::= IntersectExceptExpr
(("union" | "|")

IntersectExceptExpr)*

[53] IntersectExceptExpr ::= InstanceofExpr
(("intersect" | "except")

InstanceofExpr)*

[54] InstanceofExpr ::= TreatExpr ("instance"

Page 153 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

"of" SequenceType)?

[55] TreatExpr ::= CastableExpr ("treat"
"as" SequenceType)?

[56] CastableExpr ::= CastExpr ("castable" "as"
SingleType)?

[57] CastExpr ::= UnaryExpr ("cast" "as"
SingleType)?

[58] UnaryExpr ::= ("-" | "+")* ValueExpr

[59] ValueExpr ::= ValidateExpr | PathExpr |
ExtensionExpr

[60] GeneralComp ::= "=" | "!=" | "<" | "<=" |
">" | ">="

[61] ValueComp ::= "eq" | "ne" | "lt" | "le"
| "gt" | "ge"

[62] NodeComp ::= "is" | "<<" | ">>"

[63] ValidateExpr ::= "validate" ValidationMode?
"{" Expr "}"

[64] ValidationMode ::= "lax" | "strict"

[65] ExtensionExpr ::= Pragma+ "{" Expr? "}"

[66] Pragma ::= "(#" S? QName (S
PragmaContents)? "#)"

/* ws:
explicit */

[67] PragmaContents ::= (Char* - (Char* '#)'
Char*))

[68] PathExpr ::= ("/" RelativePathExpr?)
| ("//" RelativePathExpr)

| RelativePathExpr

/* xgs:
leading-
lone-slash */

[69] RelativePathExpr ::= StepExpr (("/" | "//")
StepExpr)*

[70] StepExpr ::= FilterExpr | AxisStep

[71] AxisStep ::= (ReverseStep |
ForwardStep) PredicateList

[72] ForwardStep ::= (ForwardAxis NodeTest) |
AbbrevForwardStep

[73] ForwardAxis ::= ("child" "::")
| ("descendant" "::")

| ("attribute" "::")

| ("self" "::")

| ("descendant-or-self"

"::")

| ("following-sibling"

"::")

| ("following" "::")

[74] AbbrevForwardStep ::= "@"? NodeTest

[75] ReverseStep ::= (ReverseAxis NodeTest) |
AbbrevReverseStep

[76] ReverseAxis ::= ("parent" "::")
| ("ancestor" "::")

Page 154 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

| ("preceding-sibling"

"::")

| ("preceding" "::")

| ("ancestor-or-self"

"::")

[77] AbbrevReverseStep ::= ".."

[78] NodeTest ::= KindTest | NameTest

[79] NameTest ::= QName | Wildcard

[80] Wildcard ::= "*"
| (NCName ":" "*")

| ("*" ":" NCName)

/* ws:
explicit */

[81] FilterExpr ::= PrimaryExpr PredicateList

[82] PredicateList ::= Predicate*

[83] Predicate ::= "[" Expr "]"

[84] PrimaryExpr ::= Literal | VarRef |
ParenthesizedExpr |

ContextItemExpr |

FunctionCall | OrderedExpr

| UnorderedExpr |

Constructor

[85] Literal ::= NumericLiteral |
StringLiteral

[86] NumericLiteral ::= IntegerLiteral |
DecimalLiteral |

DoubleLiteral

[87] VarRef ::= "$" VarName

[88] VarName ::= QName

[89] ParenthesizedExpr ::= "(" Expr? ")"

[90] ContextItemExpr ::= "."

[91] OrderedExpr ::= "ordered" "{" Expr "}"

[92] UnorderedExpr ::= "unordered" "{" Expr "}"

[93] FunctionCall ::= QName "(" (ExprSingle (","
ExprSingle)*)? ")"

/* xgs:
reserved-
function-
names */

/* gn:
parens */

[94] Constructor ::= DirectConstructor
| ComputedConstructor

[95] DirectConstructor ::= DirElemConstructor
| DirCommentConstructor

| DirPIConstructor

[96] DirElemConstructor ::= "<" QName DirAttributeList
("/>" | (">"

DirElemContent* "</" QName

S? ">"))

/* ws:
explicit */

Page 155 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

[97] DirAttributeList ::= (S (QName S? "=" S?
DirAttributeValue)?)*

/* ws:
explicit */

[98] DirAttributeValue ::= ('"' (EscapeQuot |
QuotAttrValueContent)*

'"')

| ("'" (EscapeApos |

AposAttrValueContent)*

"'")

/* ws:
explicit */

[99] QuotAttrValueContent ::= QuotAttrContentChar
| CommonContent

[100] AposAttrValueContent ::= AposAttrContentChar
| CommonContent

[101] DirElemContent ::= DirectConstructor
| CDataSection

| CommonContent

| ElementContentChar

[102] CommonContent ::= PredefinedEntityRef |
CharRef | "{{" | "}}" |

EnclosedExpr

[103] DirCommentConstructor ::= "<!--" DirCommentContents
"-->"

/* ws:
explicit */

[104] DirCommentContents ::= ((Char - '-') | ('-' (Char
- '-')))*

/* ws:
explicit */

[105] DirPIConstructor ::= "<?" PITarget (S
DirPIContents)? "?>"

/* ws:
explicit */

[106] DirPIContents ::= (Char* - (Char* '?>'
Char*))

/* ws:
explicit */

[107] CDataSection ::= "<![CDATA["
CDataSectionContents "]]>"

/* ws:
explicit */

[108] CDataSectionContents ::= (Char* - (Char* ']]>'
Char*))

/* ws:
explicit */

[109] ComputedConstructor ::= CompDocConstructor
| CompElemConstructor

| CompAttrConstructor

| CompTextConstructor

| CompCommentConstructor

| CompPIConstructor

[110] CompDocConstructor ::= "document" "{" Expr "}"

[111] CompElemConstructor ::= "element" (QName | ("{"
Expr "}")) "{"

ContentExpr? "}"

[112] ContentExpr ::= Expr

[113] CompAttrConstructor ::= "attribute" (QName | ("{"
Expr "}")) "{" Expr? "}"

[114] CompTextConstructor ::= "text" "{" Expr "}"

[115] CompCommentConstructor ::= "comment" "{" Expr "}"

[116] CompPIConstructor ::= "processing-

Page 156 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

instruction" (NCName |

("{" Expr "}")) "{" Expr?

"}"

[117] SingleType ::= AtomicType "?"?

[118] TypeDeclaration ::= "as" SequenceType

[119] SequenceType ::= ("empty-sequence" "(" ")")
| (ItemType

OccurrenceIndicator?)

[120] OccurrenceIndicator ::= "?" | "*" | "+" /* xgs:
occurrence-
indicators */

[121] ItemType ::= KindTest | ("item" "("
")") | AtomicType

[122] AtomicType ::= QName

[123] KindTest ::= DocumentTest
| ElementTest

| AttributeTest

| SchemaElementTest

| SchemaAttributeTest

| PITest

| CommentTest

| TextTest

| AnyKindTest

[124] AnyKindTest ::= "node" "(" ")"

[125] DocumentTest ::= "document-node"
"(" (ElementTest |

SchemaElementTest)? ")"

[126] TextTest ::= "text" "(" ")"

[127] CommentTest ::= "comment" "(" ")"

[128] PITest ::= "processing-instruction"
"(" (NCName |

StringLiteral)? ")"

[129] AttributeTest ::= "attribute"
"(" (AttribNameOrWildcard

("," TypeName)?)? ")"

[130] AttribNameOrWildcard ::= AttributeName | "*"

[131] SchemaAttributeTest ::= "schema-attribute" "("
AttributeDeclaration ")"

[132] AttributeDeclaration ::= AttributeName

[133] ElementTest ::= "element"
"(" (ElementNameOrWildcard

("," TypeName "?"?)?)? ")"

[134] ElementNameOrWildcard ::= ElementName | "*"

[135] SchemaElementTest ::= "schema-element" "("
ElementDeclaration ")"

[136] ElementDeclaration ::= ElementName

[137] AttributeName ::= QName

Page 157 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

A.1.1 Notation

The following definitions will be helpful in defining precisely this exposition.

[Definition: Each rule in the grammar defines one symbol, using the following
format:

symbol ::= expression

]

[Definition: A terminal is a symbol or string or pattern that can appear in the right-
hand side of a rule, but never appears on the left hand side in the main grammar,
although it may appear on the left-hand side of a rule in the grammar for
terminals.] The following constructs are used to match strings of one or more
characters in a terminal:

[a-zA-Z]

matches any Char with a value in the range(s) indicated (inclusive).

[abc]

matches any Char with a value among the characters enumerated.

[^abc]

matches any Char with a value not among the characters given.

"string"

matches the sequence of characters that appear inside the double quotes.

'string'

matches the sequence of characters that appear inside the single quotes.

[http://www.w3.org/TR/REC-example/#NT-Example]

matches any string matched by the production defined in the external

[138] ElementName ::= QName

[139] TypeName ::= QName

[140] URILiteral ::= StringLiteral

Page 158 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

specification as per the provided reference.

Patterns (including the above constructs) can be combined with grammatical
operators to form more complex patterns, matching more complex sets of
character strings. In the examples that follow, A and B represent (sub-)patterns.

(A)

A is treated as a unit and may be combined as described in this list.

A?

matches A or nothing; optional A.

A B

matches A followed by B. This operator has higher precedence than
alternation; thus A B | C D is identical to (A B) | (C D).

A | B

matches A or B but not both.

A - B

matches any string that matches A but does not match B.

A+

matches one or more occurrences of A. Concatenation has higher
precedence than alternation; thus A+ | B+ is identical to (A+) | (B+).

A*

matches zero or more occurrences of A. Concatenation has higher
precedence than alternation; thus A* | B* is identical to (A*) | (B*)

A.1.2 Extra-grammatical Constraints

This section contains constraints on the EBNF productions, which are required to
parse legal sentences. The notes below are referenced from the right side of the
production, with the notation: /* xgc: <id> */.

Constraint: leading-lone-slash

Page 159 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

A single slash may appear either as a complete path expression or as the first
part of a path expression in which it is followed by a RelativePathExpr, which
can take the form of a NameTest ("*" or a QName). In contexts where
operators like "*", "union", etc., can occur, parsers may have difficulty
distinguishing operators from NameTests. For example, without lookahead
the first part of the expression "/ * 5", for example is easily taken to be a
complete expression, "/ *", which has a very different interpretation (the child
nodes of "/").

To reduce the need for lookahead, therefore, if the token immediately
following a slash is "*" or a keyword, then the slash must be the beginning, but
not the entirety, of a PathExpr (and the following token must be a NameTest,
not an operator).

A single slash may be used as the left-hand argument of an operator by
parenthesizing it: (/) * 5. The expression 5 * /, on the other hand, is legal
without parentheses.

Constraint: xml-version

An implementation's choice to support the [XML 1.0] and [XML Names], or
[XML 1.1] and [XML Names 1.1] lexical specification determines the external
document from which to obtain the definition for this production. The EBNF
only has references to the 1.0 versions. In some cases, the XML 1.0 and XML
1.1 definitions may be exactly the same. Also please note that these external
productions follow the whitespace rules of their respective specifications, and
not the rules of this specification, in particular A.2.4.1 Default Whitespace
Handling. Thus prefix : localname is not a valid QName for purposes of
this specification, just as it is not permitted in a XML document. Also,
comments are not permissible on either side of the colon. Also extra-
grammatical constraints such as well-formedness constraints must be taken
into account.

Constraint: reserved-function-names

Unprefixed function names spelled the same way as language keywords
could make the language harder to recognize. For instance, if(foo) could be
taken either as a FunctionCall or as the beginning of an IfExpr. Therefore it is
not legal syntax for a user to invoke functions with unprefixed names which
match any of the names in A.3 Reserved Function Names.

A function named "if" can be called by binding its namespace to a prefix and
using the prefixed form: "library:if(foo)" instead of "if(foo)".

Constraint: occurrence-indicators

Page 160 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

As written, the grammar in A XQuery Grammar is ambiguous for some forms
using the '+' and '*' Kleene operators. The ambiguity is resolved as follows:
these operators are tightly bound to the SequenceType expression, and have
higher precedence than other uses of these symbols. Any occurrence of '+'
and '*', as well as '?', following a sequence type is assumed to be an
occurrence indicator. That is, a "+", "*", or "?" immediately following an
ItemType must be an OccurrenceIndicator. Thus, 4 treat as item() + - 5
must be interpreted as (4 treat as item()+) - 5, taking the '+' as an
OccurrenceIndicator and the '-' as a subtraction operator. To force the
interpretation of "+" as an addition operator (and the corresponding
interpretation of the "-" as a unary minus), parentheses may be used: the form
(4 treat as item()) + -5 surrounds the SequenceType expression with
parentheses and leads to the desired interpretation.

This rule has as a consequence that certain forms which would otherwise be
legal and unambiguous are not recognized: in "4 treat as item() + 5", the "+" is
taken as an OccurrenceIndicator, and not as an operator, which means this is
not a legal expression.

A.1.3 Grammar Notes

This section contains general notes on the EBNF productions, which may be
helpful in understanding how to interpret and implement the EBNF. These notes
are not normative. The notes below are referenced from the right side of the
production, with the notation: /* gn: <id> */.

Note:

grammar-note: parens

Look-ahead is required to distinguish FunctionCall from a QName or
keyword followed by a Pragma or Comment. For example: address (:
this may be empty :) may be mistaken for a call to a function named
"address" unless this lookahead is employed. Another example is for
(: whom the bell :) $tolls in 3 return $tolls, where the keyword
"for" must not be mistaken for a function name.

grammar-note: comments

Comments are allowed everywhere that ignorable whitespace is
allowed, and the Comment symbol does not explicity appear on the
right-hand side of the grammar (except in its own production). See
A.2.4.1 Default Whitespace Handling. Note that comments are not
allowed in direct constructor content, though they are allowed in nested
EnclosedExprs.

Page 161 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

A comment can contain nested comments, as long as all "(:" and ":)"
patterns are balanced, no matter where they occur within the outer
comment.

Note:

Lexical analysis may typically handle nested comments by
incrementing a counter for each "(:" pattern, and decrementing the
counter for each ":)" pattern. The comment does not terminate until
the counter is back to zero.

Some illustrative examples:

� (: commenting out a (: comment :) may be confusing, but

often helpful :) is a legal Comment, since balanced nesting of
comments is allowed.

� "this is just a string :)" is a legal expression. However, (:
"this is just a string :)" :) will cause a syntax error.
Likewise, "this is another string (:" is a legal expression, but
(: "this is another string (:" :) will cause a syntax error. It
is a limitation of nested comments that literal content can cause
unbalanced nesting of comments.

� for (: set up loop :) $i in $x return $i is syntactically legal,
ignoring the comment.

� 5 instance (: strange place for a comment :) of xs:integer
is also syntactically legal.

� <eg (: an example:)>{$i//title}</eg> is not syntactically legal.

� <eg> (: an example:) </eg> is syntactically legal, but the
characters that look like a comment are in fact literal element
content.

A.2 Lexical structure

The terminal symbols assumed by the grammar above are described in this
section.

Quoted strings appearing in production rules are terminal symbols.

Other terminal symbols are defined in A.2.1 Terminal Symbols.

It is implementation-defined whether the lexical rules of [XML 1.0] and [XML
Names] are followed, or alternatively, the lexical rules of [XML 1.1] and [XML
Names 1.1] are followed. Implementations that support the full [XML 1.1] character
set SHOULD, for purposes of interoperability, provide a mode that follows only the

Page 162 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

[XML 1.0] and [XML Names] lexical rules.

When tokenizing, the longest possible match that is valid in the current context is
used.

All keywords are case sensitive. Keywords are not reserved—that is, any QName
may duplicate a keyword except as noted in A.3 Reserved Function Names.

A.2.1 Terminal Symbols

[141] IntegerLiteral ::= Digits

[142] DecimalLiteral ::= ("." Digits) | (Digits
"." [0-9]*)

/* ws:
explicit */

[143] DoubleLiteral ::= (("." Digits) | (Digits
("." [0-9]*)?)) [eE] [+-]?

Digits

/* ws:
explicit */

[144] StringLiteral ::= ('"' (PredefinedEntityRef |
CharRef | EscapeQuot | [^"&])

* '"') |

("'" (PredefinedEntityRef |

CharRef | EscapeApos | [^'&])

* "'")

/* ws:
explicit */

[145] PredefinedEntityRef ::= "&" ("lt" | "gt" | "amp" |
"quot" | "apos") ";"

/* ws:
explicit */

[146] EscapeQuot ::= '""'

[147] EscapeApos ::= "''"

[148] ElementContentChar ::= Char - [{}<&]

[149] QuotAttrContentChar ::= Char - ["{}<&]

[150] AposAttrContentChar ::= Char - ['{}<&]

[151] Comment ::= "(:" (CommentContents |
Comment)* ":)"

/* ws:
explicit */

/* gn:
comments
*/

[152] PITarget ::= [http://www.w3.org/TR/REC-
xml#NT-PITarget] XML

/* xgs: xml-
version */

[153] CharRef ::= [http://www.w3.org/TR/REC-
xml#NT-CharRef] XML

/* xgs: xml-
version */

[154] QName ::= [http://www.w3.org/TR/REC-
xml-names/#NT-QName] Names

/* xgs: xml-
version */

[155] NCName ::= [http://www.w3.org/TR/REC-
xml-names/#NT-NCName] Names

/* xgs: xml-
version */

[156] S ::= [http://www.w3.org/TR/REC-
xml#NT-S] XML

/* xgs: xml-
version */

Page 163 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

The following symbols are used only in the definition of terminal symbols; they are
not terminal symbols in the grammar of A.1 EBNF.

A.2.2 Terminal Delimitation

XQuery 1.0 expressions consist of terminal symbols and symbol separators.

Terminal symbols that are not used exclusively in /* ws: explicit */ productions are
of two kinds: delimiting and non-delimiting.

[Definition: The delimiting terminal symbols are: S, "-", (comma), (semi-colon),
(colon), "::", ":=", "!=", "?", "?>", "/", "//", "/>", (dot), "..", StringLiteral, "(", "(#", ")", "[",
"]", "]]>", "{", "}", "@", "$", "*", "#)", "+", "<", "<!--", "<![CDATA[", "<?", "</", "<<",
"<=", "=", ">", "-->", ">=", ">>", "|"]

[Definition: The non-delimiting terminal symbols are: IntegerLiteral, NCName,
QName, DecimalLiteral, DoubleLiteral, "ancestor", "ancestor-or-self", "and", "as",
"ascending", "at", "attribute", "base-uri", "boundary-space", "by", "case", "cast",
"castable", "child", "collation", "comment", "construction", "copy-namespaces",
"declare", "default", "descendant", "descendant-or-self", "descending", "div",
"document", "document-node", "element", "else", "empty", "empty-sequence",
"encoding", "eq", "every", "except", "external", "following", "following-sibling", "for",
"function", "ge", "greatest", "gt", "idiv", "if", "import", "in", "inherit", "instance",
"intersect", "is", "item", "lax", "le", "least", "let", "lt", "mod", "module", "namespace",
"ne", "node", "no-inherit", "no-preserve", "of", "option", "or", "order", "ordered",
"ordering", "parent", "preceding", "preceding-sibling", "preserve", "processing-
instruction", "return", "satisfies", "schema", "schema-attribute", "schema-element",
"self", "some", "stable", "strict", "strip", "text", "then", "to", "treat", "typeswitch",
"union", "unordered", "validate", "variable", "version", "where", "xquery"]

[Definition: Whitespace and Comments function as symbol separators. For the
most part, they are not mentioned in the grammar, and may occur between any
two terminal symbols mentioned in the grammar, except where that is forbidden by
the /* ws: explicit */ annotation in the EBNF, or by the /* xgs: xml-version */
annotation.]

It is customary to separate consecutive terminal symbols by whitespace and
Comments, but this is required only when otherwise two non-delimiting symbols
would be adjacent to each other. There are two exceptions to this, that of "." and "-

[157] Char ::= [http://www.w3.org/TR/REC-
xml#NT-Char] XML

/* xgs: xml-
version */

[158] Digits ::= [0-9]+

[159] CommentContents ::= (Char+ - (Char* ('(:' | ':)') Char*))

Page 164 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

", which do require a symbol separator if they follow a QName or NCName. Also,
"." requires a separator if it precedes or follows a numeric literal.

A.2.3 End-of-Line Handling

The XQuery processor must behave as if it normalized all line breaks on input,
before parsing. The normalization should be done according to the choice to
support either [XML 1.0] or [XML 1.1] lexical processing.

A.2.3.1 XML 1.0 End-of-Line Handling

For [XML 1.0] processing, all of the following must be translated to a single #xA
character:

1. the two-character sequence #xD #xA

2. any #xD character that is not immediately followed by #xA.

A.2.3.2 XML 1.1 End-of-Line Handling

For [XML 1.1] processing, all of the following must be translated to a single #xA
character:

1. the two-character sequence #xD #xA

2. the two-character sequence #xD #x85

3. the single character #x85

4. the single character #x2028

5. any #xD character that is not immediately followed by #xA or #x85.

The characters #x85 and #x2028 cannot be reliably recognized and translated
until the VersionDecl declaration (if present) has been read.

A.2.4 Whitespace Rules

A.2.4.1 Default Whitespace Handling

[Definition: A whitespace character is any of the characters defined by
[http://www.w3.org/TR/REC-xml#NT-S].]

[Definition: Ignorable whitespace consists of any whitespace characters that may
occur between terminals, unless these characters occur in the context of a
production marked with a ws:explicit annotation, in which case they can occur only
where explicitly specified (see A.2.4.2 Explicit Whitespace Handling).] Ignorable
whitespace characters are not significant to the semantics of an expression.
Whitespace is allowed before the first terminal and after the last terminal of a
module. Whitespace is allowed between any two terminals. Comments may also

Page 165 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

act as "whitespace" to prevent two adjacent terminals from being recognized as
one. Some illustrative examples are as follows:

� foo- foo results in a syntax error. "foo-" would be recognized as a QName.

� foo -foo is syntactically equivalent to foo - foo, two QNames separated by
a subtraction operator.

� foo(: This is a comment :)- foo is syntactically equivalent to foo - foo.
This is because the comment prevents the two adjacent terminals from being
recognized as one.

� foo-foo is syntactically equivalent to single QName. This is because "-" is a
valid character in a QName. When used as an operator after the characters
of a name, the "-" must be separated from the name, e.g. by using
whitespace or parentheses.

� 10div 3 results in a syntax error.

� 10 div3 also results in a syntax error.

� 10div3 also results in a syntax error.

A.2.4.2 Explicit Whitespace Handling

Explicit whitespace notation is specified with the EBNF productions, when it is
different from the default rules, using the notation shown below. This notation is
not inherited. In other words, if an EBNF rule is marked as /* ws: explicit */, the
notation does not automatically apply to all the 'child' EBNF productions of that
rule.

ws: explicit

/* ws: explicit */ means that the EBNF notation explicitly notates, with S or
otherwise, where whitespace characters are allowed. In productions with
the /* ws: explicit */ annotation, A.2.4.1 Default Whitespace Handling does
not apply. Comments are also not allowed in these productions.

For example, whitespace is not freely allowed by the direct constructor
productions, but is specified explicitly in the grammar, in order to be more
consistent with XML.

A.3 Reserved Function Names

The following names are not allowed as function names in an unprefixed form
because expression syntax takes precedence.

� attribute

� comment

� document-node

Page 166 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

� element

� empty-sequence

� if

� item

� node

� processing-instruction

� schema-attribute

� schema-element

� text

� typeswitch

A.4 Precedence Order

The grammar in A.1 EBNF normatively defines built-in precedence among the
operators of XQuery. These operators are summarized here to make clear the
order of their precedence from lowest to highest. Operators that have a lower
precedence number cannot be contained by operators with a higher precedence
number. The associativity column indicates the order in which operators of equal
precedence in an expression are applied.

Operator Associativity

1 , (comma) left-to-right

2 := (assignment) right-to-left

3 for, some, every, typeswitch, if left-to-right

4 or left-to-right

5 and left-to-right

6 eq, ne, lt, le, gt, ge, =, !=, <, <=, >, >=, is, <<, >> left-to-right

7 to left-to-right

8 +, - left-to-right

9 *, div, idiv, mod left-to-right

10 union, | left-to-right

11 intersect, except left-to-right

12 instance of left-to-right

13 treat left-to-right

14 castable left-to-right

15 cast left-to-right

16 -(unary), +(unary) right-to-left

Page 167 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

B Type Promotion and Operator Mapping

B.1 Type Promotion

[Definition: Under certain circumstances, an atomic value can be promoted from
one type to another. Type promotion is used in evaluating function calls (see
3.1.5 Function Calls), order by clauses (see 3.8.3 Order By and Return
Clauses), and operators that accept numeric or string operands (see B.2
Operator Mapping).] The following type promotions are permitted:

1. Numeric type promotion:

a. A value of type xs:float (or any type derived by restriction from
xs:float) can be promoted to the type xs:double. The result is the
xs:double value that is the same as the original value.

b. A value of type xs:decimal (or any type derived by restriction from
xs:decimal) can be promoted to either of the types xs:float or
xs:double. The result of this promotion is created by casting the
original value to the required type. This kind of promotion may cause
loss of precision.

2. URI type promotion: A value of type xs:anyURI (or any type derived by
restriction from xs:anyURI) can be promoted to the type xs:string. The
result of this promotion is created by casting the original value to the type
xs:string.

Note:

Since xs:anyURI values can be promoted to xs:string, functions and
operators that compare strings using the default collation also compare
xs:anyURI values using the default collation. This ensures that orderings
that include strings, xs:anyURI values, or any combination of the two
types are consistent and well-defined.

Note that type promotion is different from subtype substitution. For example:

� A function that expects a parameter $p of type xs:float can be invoked with
a value of type xs:decimal. This is an example of type promotion. The value
is actually converted to the expected type. Within the body of the function, $p
instance of xs:decimal returns false.

� A function that expects a parameter $p of type xs:decimal can be invoked
with a value of type xs:integer. This is an example of subtype substitution.

17 ?, *(OccurrenceIndicator), +(OccurrenceIndicator) left-to-right

18 /, // left-to-right

19 [], (), {} left-to-right

Page 168 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

The value retains its original type. Within the body of the function, $p
instance of xs:integer returns true.

B.2 Operator Mapping

The operator mapping tables in this section list the combinations of types for which
the various operators of XQuery are defined. [Definition: For each operator and
valid combination of operand types, the operator mapping tables specify a result
type and an operator function that implements the semantics of the operator for
the given types.] The definitions of the operator functions are given in [XQuery 1.0
and XPath 2.0 Functions and Operators]. The result of an operator may be the
raising of an error by its operator function, as defined in [XQuery 1.0 and XPath
2.0 Functions and Operators]. In some cases, the operator function does not
implement the full semantics of a given operator. For the definition of each
operator (including its behavior for empty sequences or sequences of length
greater than one), see the descriptive material in the main part of this document.

The and and or operators are defined directly in the main body of this document,
and do not occur in the operator mapping tables.

If an operator in the operator mapping tables expects an operand of type ET, that
operator can be applied to an operand of type AT if type AT can be converted to
type ET by a combination of type promotion and subtype substitution. For
example, a table entry indicates that the gt operator may be applied to two
xs:date operands, returning xs:boolean. Therefore, the gt operator may also be
applied to two (possibly different) subtypes of xs:date, also returning xs:boolean.

[Definition: When referring to a type, the term numeric denotes the types
xs:integer, xs:decimal, xs:float, and xs:double.] An operator whose operands
and result are designated as numeric might be thought of as representing four
operators, one for each of the numeric types. For example, the numeric + operator
might be thought of as representing the following four operators:

A numeric operator may be validly applied to an operand of type AT if type AT can
be converted to any of the four numeric types by a combination of type promotion
and subtype substitution. If the result type of an operator is listed as numeric, it
means "the first type in the ordered list (xs:integer, xs:decimal, xs:float,
xs:double) into which all operands can be converted by subtype substitution and
type promotion." As an example, suppose that the type hatsize is derived from

Operator First operand type Second operand type Result type

+ xs:integer xs:integer xs:integer

+ xs:decimal xs:decimal xs:decimal

+ xs:float xs:float xs:float

+ xs:double xs:double xs:double

Page 169 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

xs:integer and the type shoesize is derived from xs:float. Then if the + operator
is invoked with operands of type hatsize and shoesize, it returns a result of type
xs:float. Similarly, if + is invoked with two operands of type hatsize it returns a
result of type xs:integer.

[Definition: In the operator mapping tables, the term Gregorian refers to the types
xs:gYearMonth, xs:gYear, xs:gMonthDay, xs:gDay, and xs:gMonth.] For binary
operators that accept two Gregorian-type operands, both operands must have the
same type (for example, if one operand is of type xs:gDay, the other operand must
be of type xs:gDay.)

Binary Operators

Operator Type(A) Type(B) Function Result type

A + B numeric numeric op:numeric-add(A, B) numeric

A + B xs:date xs:yearMonthDuration
op:add-
yearMonthDuration-to-
date(A, B)

xs:date

A + B xs:yearMonthDuration xs:date
op:add-
yearMonthDuration-to-
date(B, A)

xs:date

A + B xs:date xs:dayTimeDuration
op:add-
dayTimeDuration-to-
date(A, B)

xs:date

A + B xs:dayTimeDuration xs:date
op:add-
dayTimeDuration-to-
date(B, A)

xs:date

A + B xs:time xs:dayTimeDuration
op:add-
dayTimeDuration-to-
time(A, B)

xs:time

A + B xs:dayTimeDuration xs:time
op:add-
dayTimeDuration-to-
time(B, A)

xs:time

A + B xs:dateTime xs:yearMonthDuration
op:add-
yearMonthDuration-to-
dateTime(A, B)

xs:dateTime

A + B xs:yearMonthDuration xs:dateTime
op:add-
yearMonthDuration-to-
dateTime(B, A)

xs:dateTime

A + B xs:dateTime xs:dayTimeDuration
op:add-
dayTimeDuration-to-
dateTime(A, B)

xs:dateTime

A + B xs:dayTimeDuration xs:dateTime
op:add-
dayTimeDuration-to-
dateTime(B, A)

xs:dateTime

A + B xs:yearMonthDuration xs:yearMonthDuration
op:add-
yearMonthDurations(A,
B)

xs:yearMonthDuration

Page 170 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

A + B xs:dayTimeDuration xs:dayTimeDuration
op:add-
dayTimeDurations(A,
B)

xs:dayTimeDuration

A - B numeric numeric
op:numeric-subtract(A,
B)

numeric

A - B xs:date xs:date op:subtract-dates(A, B) xs:dayTimeDuration

A - B xs:date xs:yearMonthDuration
op:subtract-
yearMonthDuration-
from-date(A, B)

xs:date

A - B xs:date xs:dayTimeDuration
op:subtract-
dayTimeDuration-from-
date(A, B)

xs:date

A - B xs:time xs:time op:subtract-times(A, B) xs:dayTimeDuration

A - B xs:time xs:dayTimeDuration
op:subtract-
dayTimeDuration-from-
time(A, B)

xs:time

A - B xs:dateTime xs:dateTime
op:subtract-dateTimes
(A, B)

xs:dayTimeDuration

A - B xs:dateTime xs:yearMonthDuration
op:subtract-
yearMonthDuration-
from-dateTime(A, B)

xs:dateTime

A - B xs:dateTime xs:dayTimeDuration
op:subtract-
dayTimeDuration-from-
dateTime(A, B)

xs:dateTime

A - B xs:yearMonthDuration xs:yearMonthDuration
op:subtract-
yearMonthDurations(A,
B)

xs:yearMonthDuration

A - B xs:dayTimeDuration xs:dayTimeDuration
op:subtract-
dayTimeDurations(A,
B)

xs:dayTimeDuration

A * B numeric numeric
op:numeric-multiply(A,
B)

numeric

A * B xs:yearMonthDuration numeric
op:multiply-
yearMonthDuration(A,
B)

xs:yearMonthDuration

A * B numeric xs:yearMonthDuration
op:multiply-
yearMonthDuration(B,
A)

xs:yearMonthDuration

A * B xs:dayTimeDuration numeric
op:multiply-
dayTimeDuration(A, B)

xs:dayTimeDuration

A * B numeric xs:dayTimeDuration
op:multiply-
dayTimeDuration(B, A)

xs:dayTimeDuration

A idiv B numeric numeric
op:numeric-integer-
divide(A, B)

xs:integer

A div B numeric numeric op:numeric-divide(A, B)

numeric; but
xs:decimal if both
operands are
xs:integer

Page 171 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

A div B xs:yearMonthDuration numeric
op:divide-
yearMonthDuration(A,
B)

xs:yearMonthDuration

A div B xs:dayTimeDuration numeric
op:divide-
dayTimeDuration(A, B)

xs:dayTimeDuration

A div B xs:yearMonthDuration xs:yearMonthDuration

op:divide-
yearMonthDuration-by-
yearMonthDuration (A,
B)

xs:decimal

A div B xs:dayTimeDuration xs:dayTimeDuration
op:divide-
dayTimeDuration-by-
dayTimeDuration (A, B)

xs:decimal

A mod B numeric numeric op:numeric-mod(A, B) numeric

A eq B numeric numeric op:numeric-equal(A, B) xs:boolean

A eq B xs:boolean xs:boolean op:boolean-equal(A, B) xs:boolean

A eq B xs:string xs:string
op:numeric-equal
(fn:compare(A, B), 0)

xs:boolean

A eq B xs:date xs:date op:date-equal(A, B) xs:boolean

A eq B xs:time xs:time op:time-equal(A, B) xs:boolean

A eq B xs:dateTime xs:dateTime
op:dateTime-equal(A,
B)

xs:boolean

A eq B xs:duration xs:duration op:duration-equal(A, B) xs:boolean

A eq B Gregorian Gregorian
op:gYear-equal(A, B)
etc.

xs:boolean

A eq B xs:hexBinary xs:hexBinary
op:hex-binary-equal(A,
B)

xs:boolean

A eq B xs:base64Binary xs:base64Binary
op:base64-binary-equal
(A, B)

xs:boolean

A eq B xs:anyURI xs:anyURI
op:numeric-equal
(fn:compare(A, B), 0)

xs:boolean

A eq B xs:QName xs:QName op:QName-equal(A, B) xs:boolean

A eq B xs:NOTATION xs:NOTATION
op:NOTATION-equal
(A, B)

xs:boolean

A ne B numeric numeric
fn:not(op:numeric-equal
(A, B))

xs:boolean

A ne B xs:boolean xs:boolean
fn:not(op:boolean-
equal(A, B))

xs:boolean

A ne B xs:string xs:string
fn:not(op:numeric-equal
(fn:compare(A, B), 0))

xs:boolean

A ne B xs:date xs:date
fn:not(op:date-equal(A,
B))

xs:boolean

A ne B xs:time xs:time
fn:not(op:time-equal(A,
B))

xs:boolean

A ne B xs:dateTime xs:dateTime
fn:not(op:dateTime-
equal(A, B))

xs:boolean

A ne B xs:duration xs:duration fn:not(op:duration- xs:boolean

Page 172 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

equal(A, B))

A ne B Gregorian Gregorian
fn:not(op:gYear-equal
(A, B)) etc.

xs:boolean

A ne B xs:hexBinary xs:hexBinary
fn:not(op:hex-binary-
equal(A, B))

xs:boolean

A ne B xs:base64Binary xs:base64Binary
fn:not(op:base64-
binary-equal(A, B))

xs:boolean

A ne B xs:anyURI xs:anyURI
fn:not(op:numeric-equal
(fn:compare(A, B), 0))

xs:boolean

A ne B xs:QName xs:QName
fn:not(op:QName-equal
(A, B))

xs:boolean

A ne B xs:NOTATION xs:NOTATION
fn:not(op:NOTATION-
equal(A, B))

xs:boolean

A gt B numeric numeric
op:numeric-greater-
than(A, B)

xs:boolean

A gt B xs:boolean xs:boolean
op:boolean-greater-
than(A, B)

xs:boolean

A gt B xs:string xs:string
op:numeric-greater-
than(fn:compare(A, B),
0)

xs:boolean

A gt B xs:date xs:date
op:date-greater-than(A,
B)

xs:boolean

A gt B xs:time xs:time
op:time-greater-than(A,
B)

xs:boolean

A gt B xs:dateTime xs:dateTime
op:dateTime-greater-
than(A, B)

xs:boolean

A gt B xs:yearMonthDuration xs:yearMonthDuration
op:yearMonthDuration-
greater-than(A, B)

xs:boolean

A gt B xs:dayTimeDuration xs:dayTimeDuration
op:dayTimeDuration-
greater-than(A, B)

xs:boolean

A gt B xs:anyURI xs:anyURI
op:numeric-greater-
than(fn:compare(A, B),
0)

xs:boolean

A lt B numeric numeric
op:numeric-less-than
(A, B)

xs:boolean

A lt B xs:boolean xs:boolean
op:boolean-less-than
(A, B)

xs:boolean

A lt B xs:string xs:string
op:numeric-less-than
(fn:compare(A, B), 0)

xs:boolean

A lt B xs:date xs:date op:date-less-than(A, B) xs:boolean

A lt B xs:time xs:time op:time-less-than(A, B) xs:boolean

A lt B xs:dateTime xs:dateTime
op:dateTime-less-than
(A, B)

xs:boolean

A lt B xs:yearMonthDuration xs:yearMonthDuration
op:yearMonthDuration-
less-than(A, B)

xs:boolean

A lt B xs:dayTimeDuration xs:dayTimeDuration
op:dayTimeDuration-

xs:boolean

Page 173 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

less-than(A, B)

A lt B xs:anyURI xs:anyURI
op:numeric-less-than
(fn:compare(A, B), 0)

xs:boolean

A ge B numeric numeric
op:numeric-greater-
than(A, B) or
op:numeric-equal(A, B)

xs:boolean

A ge B xs:boolean xs:boolean
fn:not(op:boolean-less-
than(A, B))

xs:boolean

A ge B xs:string xs:string
op:numeric-greater-
than(fn:compare(A, B),
-1)

xs:boolean

A ge B xs:date xs:date
fn:not(op:date-less-than
(A, B))

xs:boolean

A ge B xs:time xs:time
fn:not(op:time-less-than
(A, B))

xs:boolean

A ge B xs:dateTime xs:dateTime
fn:not(op:dateTime-
less-than(A, B))

xs:boolean

A ge B xs:yearMonthDuration xs:yearMonthDuration
fn:not
(op:yearMonthDuration-
less-than(A, B))

xs:boolean

A ge B xs:dayTimeDuration xs:dayTimeDuration
fn:not
(op:dayTimeDuration-
less-than(A, B))

xs:boolean

A ge B xs:anyURI xs:anyURI
op:numeric-greater-
than(fn:compare(A, B),
-1)

xs:boolean

A le B numeric numeric
op:numeric-less-than
(A, B) or op:numeric-
equal(A, B)

xs:boolean

A le B xs:boolean xs:boolean
fn:not(op:boolean-
greater-than(A, B))

xs:boolean

A le B xs:string xs:string
op:numeric-less-than
(fn:compare(A, B), 1)

xs:boolean

A le B xs:date xs:date
fn:not(op:date-greater-
than(A, B))

xs:boolean

A le B xs:time xs:time
fn:not(op:time-greater-
than(A, B))

xs:boolean

A le B xs:dateTime xs:dateTime
fn:not(op:dateTime-
greater-than(A, B))

xs:boolean

A le B xs:yearMonthDuration xs:yearMonthDuration
fn:not
(op:yearMonthDuration-
greater-than(A, B))

xs:boolean

A le B xs:dayTimeDuration xs:dayTimeDuration
fn:not
(op:dayTimeDuration-
greater-than(A, B))

xs:boolean

A le B xs:anyURI xs:anyURI
op:numeric-less-than
(fn:compare(A, B), 1)

xs:boolean

A is B node() node() op:is-same-node(A, B) xs:boolean

Page 174 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

C Context Components

The tables in this section describe how values are assigned to the various
components of the static context and dynamic context, and to the parameters that
control the serialization process.

C.1 Static Context Components

The following table describes the components of the static context. The following
aspects of each component are described:

� Default initial value: This is the initial value of the component if it is not
overridden or augmented by the implementation or by a query.

� Can be overwritten or augmented by implementation: Indicates whether an
XQuery implementation is allowed to replace the default initial value of the
component by a different, implementation-defined value and/or to augment
the default initial value by additional implementation-defined values.

� Can be overwritten or augmented by a query: Indicates whether a query is
allowed to replace and/or augment the initial value provided by default or by
the implementation. If so, indicates how this is accomplished (for example,
by a declaration in the prolog).

� Scope: Indicates where the component is applicable. "Global" indicates that
the component applies globally, throughout all the modules used in a query.
"Module" indicates that the component applies throughout a module.
"Lexical" indicates that the component applies within the expression in which
it is defined (equivalent to "module" if the component is declared in a Prolog.)

A << B node() node() op:node-before(A, B) xs:boolean

A >> B node() node() op:node-after(A, B) xs:boolean

A union
B

node()* node()* op:union(A, B) node()*

A | B node()* node()* op:union(A, B) node()*

A
intersect
B

node()* node()* op:intersect(A, B) node()*

A except
B

node()* node()* op:except(A, B) node()*

A to B xs:integer xs:integer op:to(A, B) xs:integer*

A , B item()* item()* op:concatenate(A, B) item()*

Unary Operators

Operator Operand type Function Result type

+ A numeric op:numeric-unary-plus(A) numeric

- A numeric op:numeric-unary-minus(A) numeric

Page 175 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

� Consistency Rules: Indicates rules that must be observed in assigning
values to the component. Additional consistency rules may be found in 2.2.5
Consistency Constraints.

Static Context Components

Component
Default initial

value

Can be
overwritten or
augmented by

implementation?

Can be
overwritten or
augmented by

a query?

Scope
Consistency

rules

XPath 1.0
Compatibility
Mode

false no no global Must be false.

Statically
known
namespaces

fn, xml, xs, xsi,
local

overwriteable and
augmentable
(except for xml)

overwriteable
and
augmentable by
prolog or
element
constructor

lexical

Only one
namespace can
be assigned to a
given prefix per
lexical scope.

Default
element/type
namespace

no namespace overwriteable

overwriteable
by prolog or
element
constructor

lexical
Only one default
namespace per
lexical scope.

Default
function
namespace

fn
overwriteable (not
recommended)

overwriteable
by prolog

module None.

In-scope
schema types

built-in types in xs augmentable
augmentable by
schema import
in prolog

module

Only one
definition per
global or local
type.

In-scope
element
declarations

none augmentable
augmentable by
schema import
in prolog

module

Only one
definition per
global or local
element name.

In-scope
attribute
declarations

none augmentable
augmentable by
schema import
in prolog

module

Only one
definition per
global or local
attribute name.

In-scope
variables

none augmentable

overwriteable
and
augmentable by
prolog and by
variable-binding
expressions

lexical

Only one
definition per
variable per
lexical scope.

Context item
static type

none (raises error
on access)

overwriteable

not explicitly,
but can be
influenced by
expressions

lexical None.

Function
functions in fn
namespace, and

augmentable by
module import

Each function
must have a
unique

Page 176 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

C.2 Dynamic Context Components

The following table describes the components of the dynamic context. The
following aspects of each component are described:

signatures constructors for
built-in atomic
types

augmentable

and by function
declaration in
prolog

module

expanded
QName and
number of
arguments.

Statically
known
collations

only the default
collation

augmentable no module

Each URI
uniquely
identifies a
collation.

Default
collation

Unicode
codepoint
collation

overwriteable
overwriteable
by prolog

module None.

Construction
mode

preserve overwriteable
overwriteable
by prolog

module
Value must be
preserve or
strip.

Ordering
mode

ordered overwriteable
overwriteable
by prolog or
expression

lexical
Value must be
ordered or
unordered.

Default order
for empty
sequences

implementation-
defined

overwriteable
overwriteable
by prolog

module
Value must be
greatest or
least.

Boundary-
space policy

strip overwriteable
overwriteable
by prolog

module
Value must be
preserve or
strip.

Copy-
namespaces
mode

inherit, preserve overwriteable
overwriteable
by prolog

module

Value consists of
inherit or no-
inherit, and
preserve or no-
preserve.

Base URI
See rules in 4.5
Base URI
Declaration

overwriteable
overwriteable
by prolog

module

Value must be a
valid lexical
representation of
the type
xs:anyURI.

Statically
known
documents

none augmentable no module None.

Statically
known
collections

none augmentable no module None.

Statically
known default
collection
type

node()* overwriteable no module None.

Page 177 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

� Default initial value: This is the initial value of the component if it is not
overridden or augmented by the implementation or by a query.

� Can be overwritten or augmented by implementation: Indicates whether an
XQuery implementation is allowed to replace the default initial value of the
component by a different implementation-defined value and/or to augment
the default initial value by additional implementation-defined values.

� Can be overwritten or augmented by a query: Indicates whether a query is
allowed to replace and/or augment the initial value provided by default or by
the implementation. If so, indicates how this is accomplished.

� Scope: Indicates where the component is applicable. "Global" indicates that
the component applies globally, throughout all the modules used in a query,
and remains constant during evaluation of a query. "Dynamic" indicates that
evalation of an expression may influence the value of the component for that
expression and for nested expressions.

� Consistency Rules: Indicates rules that must be observed in assigning
values to the component. Additional consistency rules may be found in 2.2.5
Consistency Constraints.

Dynamic Context Components

Component
Default initial

value

Can be
overwritten or
augmented by

implementation?

Can be
overwritten or
augmented by

a query?

Scope
Consistency

rules

Context item none overwriteable

overwritten
during
evaluation of
path
expressions
and predicates

dynamic None

Context position none overwriteable

overwritten
during
evaluation of
path
expressions
and predicates

dynamic

If context item is
defined, context
position must be
>0 and <=
context size;
else context
position is
undefined.

Context size none overwriteable

overwritten
during
evaluation of
path
expressions
and predicates

dynamic

If context item is
defined, context
size must be >0;
else context size
is undefined.

Variable values none augmentable

overwriteable
and
augmentable
by prolog and
by variable-
binding

dynamic

Names and
values must be
consistent with
in-scope
variables.

Page 178 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

C.3 Serialization Parameters

The following table specifies default values for the parameters that control the
process of serializing an XDM instance into XML notation (method = "xml"). The
meanings of the various parameters are defined in [XSLT 2.0 and XQuery 1.0
Serialization]. For each parameter, an XQuery implementation may (but is not
required to) provide a means whereby a user can override the default value.

expressions

Function
implementations

functions in fn
namespace,
and
constructors
for built-in
atomic types

augmentable

augmentable
by module
import and by
function
declaration in
prolog

global

Must be
consistent with
function
signatures

Current
dateTime

none
must be initialized
by implementation

no global

Must include a
timezone.
Remains
constant during
evaluation of a
query.

Implicit
timezone

none
must be initialized
by implementation

no global

Remains
constant during
evaluation of a
query.

Available
documents

none
must be initialized
by implementation

no global None

Available
collections

none
must be initialized
by implementation

no global None

Default
collection

none overwriteable no global None

Serialization Parameters

Parameter Default Value

byte-order-mark implementation-defined

cdata-section-
elements

empty

doctype-public (none)

doctype-system (none)

encoding
implementation-defined choice
between "utf-8" and "utf-16"

escape-uri-
attributes

(not applicable when method = xml)

include-content-
type

(not applicable when method = xml)

indent no

Page 179 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

D Implementation-Defined Items

The following items in this specification are implementation-defined:

1. The version of Unicode that is used to construct expressions.

2. The statically-known collations.

3. The implicit timezone.

4. The circumstances in which warnings are raised, and the ways in which
warnings are handled.

5. The method by which errors are reported to the external processing
environment.

6. Whether the implementation is based on the rules of [XML 1.0] and [XML
Names] or the rules of [XML 1.1] and [XML Names 1.1]. One of these sets of
rules must be applied consistently by all aspects of the implementation.

7. Any components of the static context or dynamic context that are overwritten
or augmented by the implementation.

8. Which of the optional axes are supported by the implementation, if the Full-
Axis Feature is not supported.

9. The default handling of empty sequences returned by an ordering key
(sortspec) in an order by clause (empty least or empty greatest).

10. The names and semantics of any extension expressions (pragmas)
recognized by the implementation.

11. The names and semantics of any option declarations recognized by the
implementation.

12. Protocols (if any) by which parameters can be passed to an external
function, and the result of the function can returned to the invoking query.

13. The process by which the specific modules to be imported by a module
import are identified, if the Module Feature is supported (includes processing
of location hints, if any.)

14. Any static typing extensions supported by the implementation, if the Static

media-type implementation-defined

method xml

normalization-form implementation-defined

omit-xml-
declaration

implementation-defined

standalone implementation-defined

undeclare-prefixes no

use-character-
maps

empty

version implementation-defined

Page 180 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

Typing Feature is supported.

15. The means by which serialization is invoked, if the Serialization Feature is
supported.

16. The default values for the byte-order-mark, encoding, media-type,
normalization-form, omit-xml-declaration, standalone, and version
parameters, if the Serialization Feature is supported.

17. The result of an unsuccessful call to an external function (for example, if the
function implementation cannot be found or does not return a value of the
declared type).

18. Limits on ranges of values for various data types, as enumerated in 5.3 Data
Model Conformance.

Note:

Additional implementation-defined items are listed in [XQuery/XPath Data
Model (XDM)] and [XQuery 1.0 and XPath 2.0 Functions and Operators].

E References

E.1 Normative References

RFC 2119
S. Bradner. Key Words for use in RFCs to Indicate Requirement Levels.
IETF RFC 2119. See http://www.ietf.org/rfc/rfc2119.txt.

RFC2396
T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifiers
(URI): Generic Syntax. IETF RFC 2396. See
http://www.ietf.org/rfc/rfc2396.txt.

RFC3986
T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifiers
(URI): Generic Syntax. IETF RFC 3986. See
http://www.ietf.org/rfc/rfc3986.txt.

RFC3987
M. Duerst and M. Suignard. Internationalized Resource Identifiers (IRIs).
IETF RFC 3987. See http://www.ietf.org/rfc/rfc3987.txt.

ISO/IEC 10646
ISO (International Organization for Standardization). ISO/IEC 10646:2003.
Information technology—Universal Multiple-Octet Coded Character Set
(UCS), as, from time to time, amended, replaced by a new edition, or
expanded by the addition of new parts. [Geneva]: International Organization
for Standardization. (See http://www.iso.org for the latest version.)

Unicode
The Unicode Consortium. The Unicode Standard Reading, Mass.: Addison-
Wesley, 2003, as updated from time to time by the publication of new
versions. See http://www.unicode.org/unicode/standard/versions for the

Page 181 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

latest version and additional information on versions of the standard and of
the Unicode Character Database. The version of Unicode to be used is
implementation-defined, but implementations are recommended to use the
latest Unicode version.

XML 1.0
World Wide Web Consortium. Extensible Markup Language (XML) 1.0.
(Third Edition) W3C Recommendation. See http://www.w3.org/TR/REC-xml

XML 1.1
World Wide Web Consortium. Extensible Markup Language (XML) 1.1. W3C
Recommendation. See http://www.w3.org/TR/xml11/

XML Base
World Wide Web Consortium. XML Base. W3C Recommendation. See
http://www.w3.org/TR/xmlbase/

XML Names
World Wide Web Consortium. Namespaces in XML. W3C Recommendation.
See http://www.w3.org/TR/REC-xml-names/

XML Names 1.1
World Wide Web Consortium. Namespaces in XML 1.1. W3C
Recommendation. See http://www.w3.org/TR/xml-names11/

XML ID
World Wide Web Consortium. xml:id Version 1.0. W3C Recommendation.
See http://www.w3.org/TR/xml-id/

XML Schema
World Wide Web Consortium. XML Schema, Parts 0, 1, and 2 (Second
Edition). W3C Recommendation, 28 October 2004. See
http://www.w3.org/TR/xmlschema-0/, http://www.w3.org/TR/xmlschema-1/,
and http://www.w3.org/TR/xmlschema-2/.

XQuery/XPath Data Model (XDM)
World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Data Model (XDM).
W3C Recommendation, 23 Jan. 2007. See http://www.w3.org/TR/xpath-
datamodel/.

XQuery 1.0 and XPath 2.0 Formal Semantics
World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Formal Semantics.
W3C Recommendation, 23 Jan. 2007. See http://www.w3.org/TR/xquery-
semantics/.

XQuery 1.0 and XPath 2.0 Functions and Operators
World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Functions and
Operators W3C Recommendation, 23 Jan. 2007. See
http://www.w3.org/TR/xpath-functions/.

XSLT 2.0 and XQuery 1.0 Serialization
World Wide Web Consortium. XSLT 2.0 and XQuery 1.0 Serialization. W3C
Recommendation, 23 Jan. 2007. See http://www.w3.org/TR/xslt-xquery-
serialization/.

E.2 Non-normative References

XML Query 1.0 Requirements

Page 182 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

World Wide Web Consortium. XML Query 1.0 Requirements. W3C Working
Draft, 14 Nov 2003. See http://www.w3.org/TR/xquery-requirements/.

XPath 2.0
World Wide Web Consortium. XML Path Language (XPath) Version 2.0.
W3C Recommendation, 23 Jan. 2007. See http://www.w3.org/TR/xpath20/.

XQueryX 1.0
World Wide Web Consortium. XQueryX, Version 1.0. W3C
Recommendation, 23 Jan. 2007. See http://www.w3.org/TR/xqueryx/.

XSLT 2.0
World Wide Web Consortium. XSL Transformations (XSLT) 2.0. W3C
Recommendation, 23 Jan. 2007. See http://www.w3.org/TR/xslt20/

Document Object Model
World Wide Web Consortium. Document Object Model (DOM) Level 3 Core
Specification. W3C Recommendation, April 7, 2004. See
http://www.w3.org/TR/DOM-Level-3-Core/.

XML Infoset
World Wide Web Consortium. XML Information Set. W3C Recommendation
24 October 2001. See http://www.w3.org/TR/xml-infoset/

XPath 1.0
World Wide Web Consortium. XML Path Language (XPath) Version 1.0.
W3C Recommendation, Nov. 16, 1999. See
http://www.w3.org/TR/xpath.html

XPointer
World Wide Web Consortium. XML Pointer Language (XPointer). W3C Last
Call Working Draft 8 January 2001. See http://www.w3.org/TR/WD-xptr

XML Query Use Cases
World Wide Web Consortium. XML Query Use Cases. W3C Working Draft, 8
June 2006. See http://www.w3.org/TR/xquery-use-cases/.

XML 1.1 and Schema 1.0
World Wide Web Consortium. Processing XML 1.0 Documents with XML
Schema 1.0 Processors. W3C Working Group Note, 11 May 2005. See
http://www.w3.org/TR/xml11schema10/.

Uniform Resource Locators (URL)
Internet Engineering Task Force (IETF). Uniform Resource Locators (URL).
Request For Comment No. 1738, Dec. 1994. See
http://www.ietf.org/rfc/rfc1738.txt.

ODMG
Rick Cattell et al. The Object Database Standard: ODMG-93, Release 1.2.
Morgan Kaufmann Publishers, San Francisco, 1996.

Quilt
Don Chamberlin, Jonathan Robie, and Daniela Florescu. Quilt: an XML
Query Language for Heterogeneous Data Sources. In Lecture Notes in
Computer Science, Springer-Verlag, Dec. 2000. Also available at
http://www.almaden.ibm.com/cs/people/chamberlin/quilt_lncs.pdf. See also
http://www.almaden.ibm.com/cs/people/chamberlin/quilt.html.

XML-QL
Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu.

Page 183 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

A Query Language for XML.
SQL

International Organization for Standardization (ISO). Information
Technology-Database Language SQL. Standard No. ISO/IEC 9075:2003.
(Available from American National Standards Institute, New York, NY 10036,
(212) 642-4900.)

XQL
J. Robie, J. Lapp, D. Schach. XML Query Language (XQL). See
http://www.w3.org/TandS/QL/QL98/pp/xql.html.

E.3 Background Material

Character Model
World Wide Web Consortium. Character Model for the World Wide Web.
W3C Working Draft. See http://www.w3.org/TR/charmod/.

XSLT 1.0
World Wide Web Consortium. XSL Transformations (XSLT) 1.0. W3C
Recommendation. See http://www.w3.org/TR/xslt

Use Case Sample Queries
Queries from the XQuery 1.0 Use Cases, presented in a single file. See
http://www.w3.org/TR/xquery-use-cases/xquery-use-case-queries.txt.

XQuery Sample Queries
Queries from this document, presented in a single file. See
http://www.w3.org/TR/xquery-use-cases/xquery-wd-queries.txt.

F Error Conditions

err:XPST0001

It is a static error if analysis of an expression relies on some component of
the static context that has not been assigned a value.

err:XPDY0002

It is a dynamic error if evaluation of an expression relies on some part of the
dynamic context that has not been assigned a value.

err:XPST0003

It is a static error if an expression is not a valid instance of the grammar
defined in A.1 EBNF.

err:XPTY0004

It is a type error if, during the static analysis phase, an expression is found to
have a static type that is not appropriate for the context in which the

Page 184 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

expression occurs, or during the dynamic evaluation phase, the dynamic
type of a value does not match a required type as specified by the matching
rules in 2.5.4 SequenceType Matching.

err:XPST0005

During the analysis phase, it is a static error if the static type assigned to an
expression other than the expression () or data(()) is empty-sequence().

err:XPTY0006

(Not currently used.)

err:XPTY0007

(Not currently used.)

err:XPST0008

It is a static error if an expression refers to an element name, attribute name,
schema type name, namespace prefix, or variable name that is not defined
in the static context, except for an ElementName in an ElementTest or an
AttributeName in an AttributeTest.

err:XQST0009

An implementation that does not support the Schema Import Feature must
raise a static error if a Prolog contains a schema import.

err:XPST0010

An implementation must raise a static error if it encounters a reference to an
axis that it does not support.

err:XQST0012

It is a static error if the set of definitions contained in all schemas imported by
a Prolog do not satisfy the conditions for schema validity specified in
Sections 3 and 5 of [XML Schema] Part 1--i.e., each definition must be valid,
complete, and unique.

err:XQST0013

It is a static error if an implementation recognizes a pragma but determines
that its content is invalid.

Page 185 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

err:XQST0014

(Not currently used.)

err:XQST0015

(Not currently used.)

err:XQST0016

An implementation that does not support the Module Feature raises a static
error if it encounters a module declaration or a module import.

err:XPST0017

It is a static error if the expanded QName and number of arguments in a
function call do not match the name and arity of a function signature in the
static context.

err:XPTY0018

It is a type error if the result of the last step in a path expression contains
both nodes and atomic values.

err:XPTY0019

It is a type error if the result of a step (other than the last step) in a path
expression contains an atomic value.

err:XPTY0020

It is a type error if, in an axis step, the context item is not a node.

err:XPDY0021

(Not currently used.)

err:XQST0022

It is a static error if the value of a namespace declaration attribute is not a
URILiteral.

err:XQTY0023

(Not currently used.)

Page 186 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

err:XQTY0024

It is a type error if the content sequence in an element constructor contains
an attribute node following a node that is not an attribute node.

err:XQDY0025

It is a dynamic error if any attribute of a constructed element does not have a
name that is distinct from the names of all other attributes of the constructed
element.

err:XQDY0026

It is a dynamic error if the result of the content expression of a computed
processing instruction constructor contains the string "?>".

err:XQDY0027

In a validate expression, it is a dynamic error if the root element information
item in the PSVI resulting from validation does not have the expected validity
property: valid if validation mode is strict, or either valid or notKnown if
validation mode is lax.

err:XQTY0028

(Not currently used.)

err:XQDY0029

(Not currently used.)

err:XQTY0030

It is a type error if the argument of a validate expression does not evaluate
to exactly one document or element node.

err:XQST0031

It is a static error if the version number specified in a version declaration is
not supported by the implementation.

err:XQST0032

A static error is raised if a Prolog contains more than one base URI
declaration.

Page 187 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

err:XQST0033

It is a static error if a module contains multiple bindings for the same
namespace prefix.

err:XQST0034

It is a static error if multiple functions declared or imported by a module have
the number of arguments and their expanded QNames are equal (as defined
by the eq operator).

err:XQST0035

It is a static error to import two schema components that both define the
same name in the same symbol space and in the same scope.

err:XQST0036

It is a static error to import a module if the importing module's in-scope
schema types do not include definitions for the schema type names that
appear in the declarations of variables and functions (whether in an
argument type or return type) that are present in the imported module and
are referenced in the importing module.

err:XQST0037

(Not currently used.)

err:XQST0038

It is a static error if a Prolog contains more than one default collation
declaration, or the value specified by a default collation declaration is not
present in statically known collations.

err:XQST0039

It is a static error for a function declaration to have more than one parameter
with the same name.

err:XQST0040

It is a static error if the attributes specified by a direct element constructor do
not have distinct expanded QNames.

err:XQDY0041

Page 188 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

It is a dynamic error if the value of the name expression in a computed
processing instruction constructor cannot be cast to the type xs:NCName.

err:XQST0042

(Not currently used.)

err:XQST0043

(Not currently used.)

err:XQDY0044

It is a dynamic error if the node-name property of the node constructed by a
computed attribute constructor is in the namespace
http://www.w3.org/2000/xmlns/ (corresponding to namespace prefix
xmlns), or is in no namespace and has local name xmlns.

err:XQST0045

It is a static error if the function name in a function declaration is in one of the
following namespaces: http://www.w3.org/XML/1998/namespace,
http://www.w3.org/2001/XMLSchema, http://www.w3.org/2001/XMLSchema-

instance, http://www.w3.org/2005/xpath-functions.

err:XQST0046

An implementation MAY raise a static error if the value of a URILiteral is of
nonzero length and is not in the lexical space of xs:anyURI.

err:XQST0047

It is a static error if multiple module imports in the same Prolog specify the
same target namespace.

err:XQST0048

It is a static error if a function or variable declared in a library module is not in
the target namespace of the library module.

err:XQST0049

It is a static error if two or more variables declared or imported by a module
have equal expanded QNames (as defined by the eq operator.)

err:XPDY0050

Page 189 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

It is a dynamic error if the dynamic type of the operand of a treat expression
does not match the sequence type specified by the treat expression. This
error might also be raised by a path expression beginning with "/" or "//" if
the context node is not in a tree that is rooted at a document node. This is
because a leading "/" or "//" in a path expression is an abbreviation for an
initial step that includes the clause treat as document-node().

err:XPST0051

It is a static error if a QName that is used as an AtomicType in a
SequenceType is not defined in the in-scope schema types as an atomic
type.

err:XQDY0052

(Not currently used.)

err:XQST0053

(Not currently used.)

err:XQST0054

It is a static error if a variable depends on itself.

err:XQST0055

It is a static error if a Prolog contains more than one copy-namespaces
declaration.

err:XQST0056

(Not currently used.)

err:XQST0057

It is a static error if a schema import binds a namespace prefix but does not
specify a target namespace other than a zero-length string.

err:XQST0058

It is a static error if multiple schema imports specify the same target
namespace.

err:XQST0059

Page 190 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

It is a static error if an implementation is unable to process a schema or
module import by finding a schema or module with the specified target
namespace.

err:XQST0060

It is a static error if the name of a function in a function declaration is not in a
namespace (expanded QName has a null namespace URI).

err:XQDY0061

It is a dynamic error if the operand of a validate expression is a document
node whose children do not consist of exactly one element node and zero or
more comment and processing instruction nodes, in any order.

err:XQDY0062

(Not currently used.)

err:XQST0063

(Not currently used.)

err:XQDY0064

It is a dynamic error if the value of the name expression in a computed
processing instruction constructor is equal to "XML" (in any combination of
upper and lower case).

err:XQST0065

A static error is raised if a Prolog contains more than one ordering mode
declaration.

err:XQST0066

A static error is raised if a Prolog contains more than one default
element/type namespace declaration, or more than one default function
namespace declaration.

err:XQST0067

A static error is raised if a Prolog contains more than

Page 191 of 191XQuery 1.0: An XML Query Language

9/12/2008http://www.w3.org/TR/xquery/

